src/HOL/Imperative_HOL/Array.thy
changeset 37804 0145e59c1f6c
parent 37803 582d0fbd201e
child 37805 0f797d586ce5
equal deleted inserted replaced
37803:582d0fbd201e 37804:0145e59c1f6c
     8 imports Heap_Monad
     8 imports Heap_Monad
     9 begin
     9 begin
    10 
    10 
    11 subsection {* Primitives *}
    11 subsection {* Primitives *}
    12 
    12 
    13 definition (*FIXME present *)
    13 definition present :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> bool" where
    14   array_present :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> bool" where
    14   "present h a \<longleftrightarrow> addr_of_array a < lim h"
    15   "array_present h a \<longleftrightarrow> addr_of_array a < lim h"
       
    16 
    15 
    17 definition (*FIXME get :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a list" where*)
    16 definition (*FIXME get :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a list" where*)
    18   get_array :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> 'a list" where
    17   get_array :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> 'a list" where
    19   "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))"
    18   "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))"
    20 
    19 
    21 definition (*FIXME set*)
    20 definition set :: "'a\<Colon>heap array \<Rightarrow> 'a list \<Rightarrow> heap \<Rightarrow> heap" where
    22   set_array :: "'a\<Colon>heap array \<Rightarrow> 'a list \<Rightarrow> heap \<Rightarrow> heap" where
    21   "set a x = arrays_update (\<lambda>h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))"
    23   "set_array a x = 
    22 
    24   arrays_update (\<lambda>h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))"
    23 definition alloc :: "'a list \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
    25 
    24   "alloc xs h = (let
    26 definition (*FIXME alloc*)
       
    27   array :: "'a list \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
       
    28   "array xs h = (let
       
    29      l = lim h;
    25      l = lim h;
    30      r = Array l;
    26      r = Array l;
    31      h'' = set_array r xs (h\<lparr>lim := l + 1\<rparr>)
    27      h'' = set r xs (h\<lparr>lim := l + 1\<rparr>)
    32    in (r, h''))"
    28    in (r, h''))"
    33 
    29 
    34 definition length :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> nat" where
    30 definition length :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> nat" where
    35   "length h a = List.length (get_array a h)"
    31   "length h a = List.length (get_array a h)"
    36   
    32   
    37 definition update :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
    33 definition update :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
    38   "update a i x h = set_array a ((get_array a h)[i:=x]) h"
    34   "update a i x h = set a ((get_array a h)[i:=x]) h"
    39 
    35 
    40 definition (*FIXME noteq*)
    36 definition noteq :: "'a\<Colon>heap array \<Rightarrow> 'b\<Colon>heap array \<Rightarrow> bool" (infix "=!!=" 70) where
    41   noteq_arrs :: "'a\<Colon>heap array \<Rightarrow> 'b\<Colon>heap array \<Rightarrow> bool" (infix "=!!=" 70) where
       
    42   "r =!!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_array r \<noteq> addr_of_array s"
    37   "r =!!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_array r \<noteq> addr_of_array s"
    43 
    38 
    44 
    39 
    45 subsection {* Monad operations *}
    40 subsection {* Monad operations *}
    46 
    41 
    47 definition new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where
    42 definition new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where
    48   [code del]: "new n x = Heap_Monad.heap (array (replicate n x))"
    43   [code del]: "new n x = Heap_Monad.heap (alloc (replicate n x))"
    49 
    44 
    50 definition of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where
    45 definition of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where
    51   [code del]: "of_list xs = Heap_Monad.heap (array xs)"
    46   [code del]: "of_list xs = Heap_Monad.heap (alloc xs)"
    52 
    47 
    53 definition make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap" where
    48 definition make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap" where
    54   [code del]: "make n f = Heap_Monad.heap (array (map f [0 ..< n]))"
    49   [code del]: "make n f = Heap_Monad.heap (alloc (map f [0 ..< n]))"
    55 
    50 
    56 definition len :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where
    51 definition len :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where
    57   [code del]: "len a = Heap_Monad.tap (\<lambda>h. length h a)"
    52   [code del]: "len a = Heap_Monad.tap (\<lambda>h. length h a)"
    58 
    53 
    59 definition nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap" where
    54 definition nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap" where
    83 
    78 
    84 text {* Primitives *}
    79 text {* Primitives *}
    85 
    80 
    86 lemma noteq_arrs_sym: "a =!!= b \<Longrightarrow> b =!!= a"
    81 lemma noteq_arrs_sym: "a =!!= b \<Longrightarrow> b =!!= a"
    87   and unequal_arrs [simp]: "a \<noteq> a' \<longleftrightarrow> a =!!= a'"
    82   and unequal_arrs [simp]: "a \<noteq> a' \<longleftrightarrow> a =!!= a'"
    88   unfolding noteq_arrs_def by auto
    83   unfolding noteq_def by auto
    89 
    84 
    90 lemma noteq_arrs_irrefl: "r =!!= r \<Longrightarrow> False"
    85 lemma noteq_arrs_irrefl: "r =!!= r \<Longrightarrow> False"
    91   unfolding noteq_arrs_def by auto
    86   unfolding noteq_def by auto
    92 
    87 
    93 lemma present_new_arr: "array_present h a \<Longrightarrow> a =!!= fst (array xs h)"
    88 lemma present_new_arr: "present h a \<Longrightarrow> a =!!= fst (alloc xs h)"
    94   by (simp add: array_present_def noteq_arrs_def array_def Let_def)
    89   by (simp add: present_def noteq_def alloc_def Let_def)
    95 
    90 
    96 lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x"
    91 lemma array_get_set_eq [simp]: "get_array r (set r x h) = x"
    97   by (simp add: get_array_def set_array_def o_def)
    92   by (simp add: get_array_def set_def o_def)
    98 
    93 
    99 lemma array_get_set_neq [simp]: "r =!!= s \<Longrightarrow> get_array r (set_array s x h) = get_array r h"
    94 lemma array_get_set_neq [simp]: "r =!!= s \<Longrightarrow> get_array r (set s x h) = get_array r h"
   100   by (simp add: noteq_arrs_def get_array_def set_array_def)
    95   by (simp add: noteq_def get_array_def set_def)
   101 
    96 
   102 lemma set_array_same [simp]:
    97 lemma set_array_same [simp]:
   103   "set_array r x (set_array r y h) = set_array r x h"
    98   "set r x (set r y h) = set r x h"
   104   by (simp add: set_array_def)
    99   by (simp add: set_def)
   105 
   100 
   106 lemma array_set_set_swap:
   101 lemma array_set_set_swap:
   107   "r =!!= r' \<Longrightarrow> set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)"
   102   "r =!!= r' \<Longrightarrow> set r x (set r' x' h) = set r' x' (set r x h)"
   108   by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def)
   103   by (simp add: Let_def expand_fun_eq noteq_def set_def)
   109 
   104 
   110 lemma get_array_update_eq [simp]:
   105 lemma get_array_update_eq [simp]:
   111   "get_array a (update a i v h) = (get_array a h) [i := v]"
   106   "get_array a (update a i v h) = (get_array a h) [i := v]"
   112   by (simp add: update_def)
   107   by (simp add: update_def)
   113 
   108 
   114 lemma nth_update_array_neq_array [simp]:
   109 lemma nth_update_array_neq_array [simp]:
   115   "a =!!= b \<Longrightarrow> get_array a (update b j v h) ! i = get_array a h ! i"
   110   "a =!!= b \<Longrightarrow> get_array a (update b j v h) ! i = get_array a h ! i"
   116   by (simp add: update_def noteq_arrs_def)
   111   by (simp add: update_def noteq_def)
   117 
   112 
   118 lemma get_arry_array_update_elem_neqIndex [simp]:
   113 lemma get_arry_array_update_elem_neqIndex [simp]:
   119   "i \<noteq> j \<Longrightarrow> get_array a (update a j v h) ! i = get_array a h ! i"
   114   "i \<noteq> j \<Longrightarrow> get_array a (update a j v h) ! i = get_array a h ! i"
   120   by simp
   115   by simp
   121 
   116 
   122 lemma length_update [simp]: 
   117 lemma length_update [simp]: 
   123   "length (update b i v h) = length h"
   118   "length (update b i v h) = length h"
   124   by (simp add: update_def length_def set_array_def get_array_def expand_fun_eq)
   119   by (simp add: update_def length_def set_def get_array_def expand_fun_eq)
   125 
   120 
   126 lemma update_swap_neqArray:
   121 lemma update_swap_neqArray:
   127   "a =!!= a' \<Longrightarrow> 
   122   "a =!!= a' \<Longrightarrow> 
   128   update a i v (update a' i' v' h) 
   123   update a i v (update a' i' v' h) 
   129   = update a' i' v' (update a i v h)"
   124   = update a' i' v' (update a i v h)"
   138 lemma update_swap_neqIndex:
   133 lemma update_swap_neqIndex:
   139   "\<lbrakk> i \<noteq> i' \<rbrakk> \<Longrightarrow> update a i v (update a i' v' h) = update a i' v' (update a i v h)"
   134   "\<lbrakk> i \<noteq> i' \<rbrakk> \<Longrightarrow> update a i v (update a i' v' h) = update a i' v' (update a i v h)"
   140   by (auto simp add: update_def array_set_set_swap list_update_swap)
   135   by (auto simp add: update_def array_set_set_swap list_update_swap)
   141 
   136 
   142 lemma get_array_init_array_list:
   137 lemma get_array_init_array_list:
   143   "get_array (fst (array ls h)) (snd (array ls' h)) = ls'"
   138   "get_array (fst (alloc ls h)) (snd (alloc ls' h)) = ls'"
   144   by (simp add: Let_def split_def array_def)
   139   by (simp add: Let_def split_def alloc_def)
   145 
   140 
   146 lemma set_array:
   141 lemma set_array:
   147   "set_array (fst (array ls h))
   142   "set (fst (alloc ls h))
   148      new_ls (snd (array ls h))
   143      new_ls (snd (alloc ls h))
   149        = snd (array new_ls h)"
   144        = snd (alloc new_ls h)"
   150   by (simp add: Let_def split_def array_def)
   145   by (simp add: Let_def split_def alloc_def)
   151 
   146 
   152 lemma array_present_update [simp]: 
   147 lemma array_present_update [simp]: 
   153   "array_present (update b i v h) = array_present h"
   148   "present (update b i v h) = present h"
   154   by (simp add: update_def array_present_def set_array_def get_array_def expand_fun_eq)
   149   by (simp add: update_def present_def set_def get_array_def expand_fun_eq)
   155 
   150 
   156 lemma array_present_array [simp]:
   151 lemma array_present_array [simp]:
   157   "array_present (snd (array xs h)) (fst (array xs h))"
   152   "present (snd (alloc xs h)) (fst (alloc xs h))"
   158   by (simp add: array_present_def array_def set_array_def Let_def)
   153   by (simp add: present_def alloc_def set_def Let_def)
   159 
   154 
   160 lemma not_array_present_array [simp]:
   155 lemma not_array_present_array [simp]:
   161   "\<not> array_present h (fst (array xs h))"
   156   "\<not> present h (fst (alloc xs h))"
   162   by (simp add: array_present_def array_def Let_def)
   157   by (simp add: present_def alloc_def Let_def)
   163 
   158 
   164 
   159 
   165 text {* Monad operations *}
   160 text {* Monad operations *}
   166 
   161 
   167 lemma execute_new [execute_simps]:
   162 lemma execute_new [execute_simps]:
   168   "execute (new n x) h = Some (array (replicate n x) h)"
   163   "execute (new n x) h = Some (alloc (replicate n x) h)"
   169   by (simp add: new_def execute_simps)
   164   by (simp add: new_def execute_simps)
   170 
   165 
   171 lemma success_newI [success_intros]:
   166 lemma success_newI [success_intros]:
   172   "success (new n x) h"
   167   "success (new n x) h"
   173   by (auto intro: success_intros simp add: new_def)
   168   by (auto intro: success_intros simp add: new_def)
   174 
   169 
   175 lemma crel_newI [crel_intros]:
   170 lemma crel_newI [crel_intros]:
   176   assumes "(a, h') = array (replicate n x) h"
   171   assumes "(a, h') = alloc (replicate n x) h"
   177   shows "crel (new n x) h h' a"
   172   shows "crel (new n x) h h' a"
   178   by (rule crelI) (simp add: assms execute_simps)
   173   by (rule crelI) (simp add: assms execute_simps)
   179 
   174 
   180 lemma crel_newE [crel_elims]:
   175 lemma crel_newE [crel_elims]:
   181   assumes "crel (new n x) h h' r"
   176   assumes "crel (new n x) h h' r"
   182   obtains "r = fst (array (replicate n x) h)" "h' = snd (array (replicate n x) h)" 
   177   obtains "r = fst (alloc (replicate n x) h)" "h' = snd (alloc (replicate n x) h)" 
   183     "get_array r h' = replicate n x" "array_present h' r" "\<not> array_present h r"
   178     "get_array r h' = replicate n x" "present h' r" "\<not> present h r"
   184   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   179   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   185 
   180 
   186 lemma execute_of_list [execute_simps]:
   181 lemma execute_of_list [execute_simps]:
   187   "execute (of_list xs) h = Some (array xs h)"
   182   "execute (of_list xs) h = Some (alloc xs h)"
   188   by (simp add: of_list_def execute_simps)
   183   by (simp add: of_list_def execute_simps)
   189 
   184 
   190 lemma success_of_listI [success_intros]:
   185 lemma success_of_listI [success_intros]:
   191   "success (of_list xs) h"
   186   "success (of_list xs) h"
   192   by (auto intro: success_intros simp add: of_list_def)
   187   by (auto intro: success_intros simp add: of_list_def)
   193 
   188 
   194 lemma crel_of_listI [crel_intros]:
   189 lemma crel_of_listI [crel_intros]:
   195   assumes "(a, h') = array xs h"
   190   assumes "(a, h') = alloc xs h"
   196   shows "crel (of_list xs) h h' a"
   191   shows "crel (of_list xs) h h' a"
   197   by (rule crelI) (simp add: assms execute_simps)
   192   by (rule crelI) (simp add: assms execute_simps)
   198 
   193 
   199 lemma crel_of_listE [crel_elims]:
   194 lemma crel_of_listE [crel_elims]:
   200   assumes "crel (of_list xs) h h' r"
   195   assumes "crel (of_list xs) h h' r"
   201   obtains "r = fst (array xs h)" "h' = snd (array xs h)" 
   196   obtains "r = fst (alloc xs h)" "h' = snd (alloc xs h)" 
   202     "get_array r h' = xs" "array_present h' r" "\<not> array_present h r"
   197     "get_array r h' = xs" "present h' r" "\<not> present h r"
   203   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   198   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   204 
   199 
   205 lemma execute_make [execute_simps]:
   200 lemma execute_make [execute_simps]:
   206   "execute (make n f) h = Some (array (map f [0 ..< n]) h)"
   201   "execute (make n f) h = Some (alloc (map f [0 ..< n]) h)"
   207   by (simp add: make_def execute_simps)
   202   by (simp add: make_def execute_simps)
   208 
   203 
   209 lemma success_makeI [success_intros]:
   204 lemma success_makeI [success_intros]:
   210   "success (make n f) h"
   205   "success (make n f) h"
   211   by (auto intro: success_intros simp add: make_def)
   206   by (auto intro: success_intros simp add: make_def)
   212 
   207 
   213 lemma crel_makeI [crel_intros]:
   208 lemma crel_makeI [crel_intros]:
   214   assumes "(a, h') = array (map f [0 ..< n]) h"
   209   assumes "(a, h') = alloc (map f [0 ..< n]) h"
   215   shows "crel (make n f) h h' a"
   210   shows "crel (make n f) h h' a"
   216   by (rule crelI) (simp add: assms execute_simps)
   211   by (rule crelI) (simp add: assms execute_simps)
   217 
   212 
   218 lemma crel_makeE [crel_elims]:
   213 lemma crel_makeE [crel_elims]:
   219   assumes "crel (make n f) h h' r"
   214   assumes "crel (make n f) h h' r"
   220   obtains "r = fst (array (map f [0 ..< n]) h)" "h' = snd (array (map f [0 ..< n]) h)" 
   215   obtains "r = fst (alloc (map f [0 ..< n]) h)" "h' = snd (alloc (map f [0 ..< n]) h)" 
   221     "get_array r h' = map f [0 ..< n]" "array_present h' r" "\<not> array_present h r"
   216     "get_array r h' = map f [0 ..< n]" "present h' r" "\<not> present h r"
   222   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   217   using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
   223 
   218 
   224 lemma execute_len [execute_simps]:
   219 lemma execute_len [execute_simps]:
   225   "execute (len a) h = Some (length h a, h)"
   220   "execute (len a) h = Some (length h a, h)"
   226   by (simp add: len_def execute_simps)
   221   by (simp add: len_def execute_simps)
   353 
   348 
   354 lemma array_of_list_make:
   349 lemma array_of_list_make:
   355   "of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"
   350   "of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"
   356   by (rule Heap_eqI) (simp add: map_nth execute_simps)
   351   by (rule Heap_eqI) (simp add: map_nth execute_simps)
   357 
   352 
   358 hide_const (open) update new of_list make len nth upd map_entry swap freeze
   353 hide_const (open) present (*get*) set alloc length update noteq new of_list make len nth upd map_entry swap freeze
   359 
   354 
   360 
   355 
   361 subsection {* Code generator setup *}
   356 subsection {* Code generator setup *}
   362 
   357 
   363 subsubsection {* Logical intermediate layer *}
   358 subsubsection {* Logical intermediate layer *}
   425      Heap_Monad.fold_map (\<lambda>i. Array.nth a i) [0..<n]
   420      Heap_Monad.fold_map (\<lambda>i. Array.nth a i) [0..<n]
   426    }"
   421    }"
   427 proof (rule Heap_eqI)
   422 proof (rule Heap_eqI)
   428   fix h
   423   fix h
   429   have *: "List.map
   424   have *: "List.map
   430      (\<lambda>x. fst (the (if x < length h a
   425      (\<lambda>x. fst (the (if x < Array.length h a
   431                     then Some (get_array a h ! x, h) else None)))
   426                     then Some (get_array a h ! x, h) else None)))
   432      [0..<length h a] =
   427      [0..<Array.length h a] =
   433        List.map (List.nth (get_array a h)) [0..<length h a]"
   428        List.map (List.nth (get_array a h)) [0..<Array.length h a]"
   434     by simp
   429     by simp
   435   have "execute (Heap_Monad.fold_map (Array.nth a) [0..<length h a]) h =
   430   have "execute (Heap_Monad.fold_map (Array.nth a) [0..<Array.length h a]) h =
   436     Some (get_array a h, h)"
   431     Some (get_array a h, h)"
   437     apply (subst execute_fold_map_unchanged_heap)
   432     apply (subst execute_fold_map_unchanged_heap)
   438     apply (simp_all add: nth_def guard_def *)
   433     apply (simp_all add: nth_def guard_def *)
   439     apply (simp add: length_def map_nth)
   434     apply (simp add: length_def map_nth)
   440     done
   435     done