src/HOL/Univ.thy
changeset 10213 01c2744a3786
parent 10212 33fe2d701ddd
child 10214 77349ed89f45
equal deleted inserted replaced
10212:33fe2d701ddd 10213:01c2744a3786
     1 (*  Title:      HOL/Univ.thy
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 Declares the type ('a, 'b) node, a subtype of (nat=>'b+nat) * ('a+nat)
       
     7 
       
     8 Defines "Cartesian Product" and "Disjoint Sum" as set operations.
       
     9 Could <*> be generalized to a general summation (Sigma)?
       
    10 *)
       
    11 
       
    12 Univ = Arith + Sum +
       
    13 
       
    14 
       
    15 (** lists, trees will be sets of nodes **)
       
    16 
       
    17 typedef (Node)
       
    18   ('a, 'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
       
    19 
       
    20 types
       
    21   'a item = ('a, unit) node set
       
    22   ('a, 'b) dtree = ('a, 'b) node set
       
    23 
       
    24 consts
       
    25   apfst     :: "['a=>'c, 'a*'b] => 'c*'b"
       
    26   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
       
    27 
       
    28   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
       
    29   ndepth    :: ('a, 'b) node => nat
       
    30 
       
    31   Atom      :: "('a + nat) => ('a, 'b) dtree"
       
    32   Leaf      :: 'a => ('a, 'b) dtree
       
    33   Numb      :: nat => ('a, 'b) dtree
       
    34   Scons     :: [('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree
       
    35   In0,In1   :: ('a, 'b) dtree => ('a, 'b) dtree
       
    36 
       
    37   Lim       :: ('b => ('a, 'b) dtree) => ('a, 'b) dtree
       
    38   Funs      :: "'u set => ('t => 'u) set"
       
    39 
       
    40   ntrunc    :: [nat, ('a, 'b) dtree] => ('a, 'b) dtree
       
    41 
       
    42   uprod     :: [('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set
       
    43   usum      :: [('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set
       
    44 
       
    45   Split     :: [[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c
       
    46   Case      :: [[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c
       
    47 
       
    48   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] 
       
    49                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
       
    50   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] 
       
    51                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
       
    52 
       
    53 
       
    54 defs
       
    55 
       
    56   Push_Node_def  "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
       
    57 
       
    58   (*crude "lists" of nats -- needed for the constructions*)
       
    59   apfst_def  "apfst == (%f (x,y). (f(x),y))"
       
    60   Push_def   "Push == (%b h. nat_case b h)"
       
    61 
       
    62   (** operations on S-expressions -- sets of nodes **)
       
    63 
       
    64   (*S-expression constructors*)
       
    65   Atom_def   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
       
    66   Scons_def  "Scons M N == (Push_Node (Inr 1) `` M) Un (Push_Node (Inr 2) `` N)"
       
    67 
       
    68   (*Leaf nodes, with arbitrary or nat labels*)
       
    69   Leaf_def   "Leaf == Atom o Inl"
       
    70   Numb_def   "Numb == Atom o Inr"
       
    71 
       
    72   (*Injections of the "disjoint sum"*)
       
    73   In0_def    "In0(M) == Scons (Numb 0) M"
       
    74   In1_def    "In1(M) == Scons (Numb 1) M"
       
    75 
       
    76   (*Function spaces*)
       
    77   Lim_def "Lim f == Union {z. ? x. z = Push_Node (Inl x) `` (f x)}"
       
    78   Funs_def "Funs S == {f. range f <= S}"
       
    79 
       
    80   (*the set of nodes with depth less than k*)
       
    81   ndepth_def "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
       
    82   ntrunc_def "ntrunc k N == {n. n:N & ndepth(n)<k}"
       
    83 
       
    84   (*products and sums for the "universe"*)
       
    85   uprod_def  "uprod A B == UN x:A. UN y:B. { Scons x y }"
       
    86   usum_def   "usum A B == In0``A Un In1``B"
       
    87 
       
    88   (*the corresponding eliminators*)
       
    89   Split_def  "Split c M == @u. ? x y. M = Scons x y & u = c x y"
       
    90 
       
    91   Case_def   "Case c d M == @u.  (? x . M = In0(x) & u = c(x)) 
       
    92                                | (? y . M = In1(y) & u = d(y))"
       
    93 
       
    94 
       
    95   (** equality for the "universe" **)
       
    96 
       
    97   dprod_def  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
       
    98 
       
    99   dsum_def   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un 
       
   100                           (UN (y,y'):s. {(In1(y),In1(y'))})"
       
   101 
       
   102 end