src/HOL/Integ/Integ.ML
changeset 5562 02261e6880d1
parent 5561 426c1e330903
child 5563 228b92552d1f
equal deleted inserted replaced
5561:426c1e330903 5562:02261e6880d1
     1 (*  Title:      Integ.thy
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1998  University of Cambridge
       
     5 
       
     6 Type "int" is a linear order
       
     7 *)
       
     8 
       
     9 Goal "(w<z) = neg(w-z)";
       
    10 by (simp_tac (simpset() addsimps [zless_def]) 1);
       
    11 qed "zless_eq_neg";
       
    12 
       
    13 Goal "(w=z) = iszero(w-z)";
       
    14 by (simp_tac (simpset() addsimps [iszero_def, zdiff_eq_eq]) 1);
       
    15 qed "eq_eq_iszero";
       
    16 
       
    17 Goal "(w<=z) = (~ neg(z-w))";
       
    18 by (simp_tac (simpset() addsimps [zle_def, zless_def]) 1);
       
    19 qed "zle_eq_not_neg";
       
    20 
       
    21 (*This list of rewrites simplifies (in)equalities by subtracting the RHS
       
    22   from the LHS, then using the cancellation simproc.  Use with zadd_ac.*)
       
    23 val zcompare_0_rls = 
       
    24     [zdiff_def, zless_eq_neg, eq_eq_iszero, zle_eq_not_neg];
       
    25 
       
    26 
       
    27 (*** Monotonicity results ***)
       
    28 
       
    29 Goal "(v+z < w+z) = (v < (w::int))";
       
    30 by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    31 qed "zadd_right_cancel_zless";
       
    32 
       
    33 Goal "(z+v < z+w) = (v < (w::int))";
       
    34 by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    35 qed "zadd_left_cancel_zless";
       
    36 
       
    37 Addsimps [zadd_right_cancel_zless, zadd_left_cancel_zless];
       
    38 
       
    39 Goal "(v+z <= w+z) = (v <= (w::int))";
       
    40 by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    41 qed "zadd_right_cancel_zle";
       
    42 
       
    43 Goal "(z+v <= z+w) = (v <= (w::int))";
       
    44 by (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    45 qed "zadd_left_cancel_zle";
       
    46 
       
    47 Addsimps [zadd_right_cancel_zle, zadd_left_cancel_zle];
       
    48 
       
    49 (*"v<=w ==> v+z <= w+z"*)
       
    50 bind_thm ("zadd_zless_mono1", zadd_right_cancel_zless RS iffD2);
       
    51 
       
    52 (*"v<=w ==> v+z <= w+z"*)
       
    53 bind_thm ("zadd_zle_mono1", zadd_right_cancel_zle RS iffD2);
       
    54 
       
    55 Goal "!!z z'::int. [| w'<=w; z'<=z |] ==> w' + z' <= w + z";
       
    56 by (etac (zadd_zle_mono1 RS zle_trans) 1);
       
    57 by (Simp_tac 1);
       
    58 qed "zadd_zle_mono";
       
    59 
       
    60 Goal "!!z z'::int. [| w'<w; z'<=z |] ==> w' + z' < w + z";
       
    61 by (etac (zadd_zless_mono1 RS zless_zle_trans) 1);
       
    62 by (Simp_tac 1);
       
    63 qed "zadd_zless_mono";
       
    64 
       
    65 
       
    66 (*** Comparison laws ***)
       
    67 
       
    68 Goal "(- x < - y) = (y < (x::int))";
       
    69 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    70 qed "zminus_zless_zminus"; 
       
    71 Addsimps [zminus_zless_zminus];
       
    72 
       
    73 Goal "(- x <= - y) = (y <= (x::int))";
       
    74 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    75 qed "zminus_zle_zminus"; 
       
    76 Addsimps [zminus_zle_zminus];
       
    77 
       
    78 (** The next several equations can make the simplifier loop! **)
       
    79 
       
    80 Goal "(x < - y) = (y < - (x::int))";
       
    81 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    82 qed "zless_zminus"; 
       
    83 
       
    84 Goal "(- x < y) = (- y < (x::int))";
       
    85 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    86 qed "zminus_zless"; 
       
    87 
       
    88 Goal "(x <= - y) = (y <= - (x::int))";
       
    89 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    90 qed "zle_zminus"; 
       
    91 
       
    92 Goal "(- x <= y) = (- y <= (x::int))";
       
    93 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    94 qed "zminus_zle"; 
       
    95 
       
    96 Goal "- $# Suc n < $# 0";
       
    97 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
    98 qed "negative_zless_0"; 
       
    99 
       
   100 Goal "- $# Suc n < $# m";
       
   101 by (rtac (negative_zless_0 RS zless_zle_trans) 1);
       
   102 by (Simp_tac 1); 
       
   103 qed "negative_zless"; 
       
   104 AddIffs [negative_zless]; 
       
   105 
       
   106 Goal "- $# n <= $#0";
       
   107 by (simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac) 1);
       
   108 qed "negative_zle_0"; 
       
   109 
       
   110 Goal "- $# n <= $# m";
       
   111 by (simp_tac (simpset() addsimps add_nat :: zcompare_0_rls @ zadd_ac) 1);
       
   112 qed "negative_zle"; 
       
   113 AddIffs [negative_zle]; 
       
   114 
       
   115 Goal "~($# 0 <= - $# Suc n)";
       
   116 by (stac zle_zminus 1);
       
   117 by (Simp_tac 1);
       
   118 qed "not_zle_0_negative"; 
       
   119 Addsimps [not_zle_0_negative]; 
       
   120 
       
   121 Goal "($# n <= - $# m) = (n = 0 & m = 0)"; 
       
   122 by Safe_tac; 
       
   123 by (Simp_tac 3); 
       
   124 by (dtac (zle_zminus RS iffD1) 2); 
       
   125 by (ALLGOALS (dtac (negative_zle_0 RSN(2,zle_trans)))); 
       
   126 by (ALLGOALS Asm_full_simp_tac); 
       
   127 qed "nat_zle_neg"; 
       
   128 
       
   129 Goal "~($# n < - $# m)";
       
   130 by (simp_tac (simpset() addsimps [symmetric zle_def]) 1); 
       
   131 qed "not_nat_zless_negative"; 
       
   132 
       
   133 Goal "(- $# n = $# m) = (n = 0 & m = 0)"; 
       
   134 by (rtac iffI 1);
       
   135 by (rtac (nat_zle_neg RS iffD1) 1); 
       
   136 by (dtac sym 1); 
       
   137 by (ALLGOALS Asm_simp_tac); 
       
   138 qed "negative_eq_positive"; 
       
   139 
       
   140 Addsimps [negative_eq_positive, not_nat_zless_negative]; 
       
   141 
       
   142 
       
   143 Goal "(w <= z) = (EX n. z = w + $# n)";
       
   144 by (auto_tac (claset(),
       
   145 	      simpset() addsimps [zless_iff_Suc_zadd, integ_le_less]));
       
   146 by (ALLGOALS (full_simp_tac (simpset() addsimps zcompare_0_rls @ zadd_ac)));
       
   147 by (ALLGOALS (full_simp_tac (simpset() addsimps [iszero_def])));
       
   148 by (blast_tac (claset() addIs [Suc_pred RS sym]) 1);
       
   149 qed "zle_iff_zadd";
       
   150 
       
   151 
       
   152 Goalw [zdiff_def,zless_def] "neg x = (x < $# 0)";
       
   153 by Auto_tac; 
       
   154 qed "neg_eq_less_nat0"; 
       
   155 
       
   156 Goalw [zle_def] "(~neg x) = ($# 0 <= x)";
       
   157 by (simp_tac (simpset() addsimps [neg_eq_less_nat0]) 1); 
       
   158 qed "not_neg_eq_ge_nat0"; 
       
   159 
       
   160 
       
   161 (**** nat_of: magnitide of an integer, as a natural number ****)
       
   162 
       
   163 Goalw [nat_of_def] "nat_of($# n) = n";
       
   164 by Auto_tac;
       
   165 qed "nat_of_nat";
       
   166 
       
   167 Goalw [nat_of_def] "nat_of(- $# n) = 0";
       
   168 by (auto_tac (claset(),
       
   169 	      simpset() addsimps [neg_eq_less_nat0, zminus_zless])); 
       
   170 qed "nat_of_zminus_nat";
       
   171 
       
   172 Addsimps [nat_of_nat, nat_of_zminus_nat];
       
   173 
       
   174 Goal "~ neg z ==> $# (nat_of z) = z"; 
       
   175 by (dtac (not_neg_eq_ge_nat0 RS iffD1) 1); 
       
   176 by (dtac zle_imp_zless_or_eq 1); 
       
   177 by (auto_tac (claset(), simpset() addsimps [zless_iff_Suc_zadd])); 
       
   178 qed "not_neg_nat_of"; 
       
   179 
       
   180 Goal "neg x ==> ? n. x = - $# Suc n"; 
       
   181 by (auto_tac (claset(), 
       
   182 	      simpset() addsimps [neg_eq_less_nat0, zless_iff_Suc_zadd,
       
   183 				  zdiff_eq_eq RS sym, zdiff_def])); 
       
   184 qed "negD"; 
       
   185 
       
   186 Goalw [nat_of_def] "neg z ==> nat_of z = 0"; 
       
   187 by Auto_tac; 
       
   188 qed "neg_nat_of"; 
       
   189 
       
   190 (* a case theorem distinguishing positive and negative int *)  
       
   191 
       
   192 val prems = Goal "[|!! n. P ($# n); !! n. P (- $# Suc n) |] ==> P z"; 
       
   193 by (case_tac "neg z" 1); 
       
   194 by (blast_tac (claset() addSDs [negD] addSIs prems) 1); 
       
   195 by (etac (not_neg_nat_of RS subst) 1);
       
   196 by (resolve_tac prems 1);
       
   197 qed "int_cases"; 
       
   198 
       
   199 fun int_case_tac x = res_inst_tac [("z",x)] int_cases; 
       
   200