src/HOL/Finite_Set.thy
changeset 32642 026e7c6a6d08
parent 32437 66f1a0dfe7d9
child 32679 096306d7391d
child 32697 72e8608dce54
equal deleted inserted replaced
32637:827cac8abecc 32642:026e7c6a6d08
  2964   "lower_semilattice (op \<ge>) (op >) max"
  2964   "lower_semilattice (op \<ge>) (op >) max"
  2965   by (fact min_max.dual_semilattice)
  2965   by (fact min_max.dual_semilattice)
  2966 
  2966 
  2967 lemma dual_max:
  2967 lemma dual_max:
  2968   "ord.max (op \<ge>) = min"
  2968   "ord.max (op \<ge>) = min"
  2969   by (auto simp add: ord.max_def_raw expand_fun_eq)
  2969   by (auto simp add: ord.max_def_raw min_def expand_fun_eq)
  2970 
  2970 
  2971 lemma dual_min:
  2971 lemma dual_min:
  2972   "ord.min (op \<ge>) = max"
  2972   "ord.min (op \<ge>) = max"
  2973   by (auto simp add: ord.min_def_raw expand_fun_eq)
  2973   by (auto simp add: ord.min_def_raw max_def expand_fun_eq)
  2974 
  2974 
  2975 lemma strict_below_fold1_iff:
  2975 lemma strict_below_fold1_iff:
  2976   assumes "finite A" and "A \<noteq> {}"
  2976   assumes "finite A" and "A \<noteq> {}"
  2977   shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
  2977   shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
  2978 proof -
  2978 proof -