equal
deleted
inserted
replaced
2964 "lower_semilattice (op \<ge>) (op >) max" |
2964 "lower_semilattice (op \<ge>) (op >) max" |
2965 by (fact min_max.dual_semilattice) |
2965 by (fact min_max.dual_semilattice) |
2966 |
2966 |
2967 lemma dual_max: |
2967 lemma dual_max: |
2968 "ord.max (op \<ge>) = min" |
2968 "ord.max (op \<ge>) = min" |
2969 by (auto simp add: ord.max_def_raw expand_fun_eq) |
2969 by (auto simp add: ord.max_def_raw min_def expand_fun_eq) |
2970 |
2970 |
2971 lemma dual_min: |
2971 lemma dual_min: |
2972 "ord.min (op \<ge>) = max" |
2972 "ord.min (op \<ge>) = max" |
2973 by (auto simp add: ord.min_def_raw expand_fun_eq) |
2973 by (auto simp add: ord.min_def_raw max_def expand_fun_eq) |
2974 |
2974 |
2975 lemma strict_below_fold1_iff: |
2975 lemma strict_below_fold1_iff: |
2976 assumes "finite A" and "A \<noteq> {}" |
2976 assumes "finite A" and "A \<noteq> {}" |
2977 shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" |
2977 shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" |
2978 proof - |
2978 proof - |