14 \isacommand{datatype}~('a,'v)expr~=~Cex~'v\isanewline |
14 \isacommand{datatype}~('a,'v)expr~=~Cex~'v\isanewline |
15 ~~~~~~~~~~~~~~~~~~~~~|~Vex~'a\isanewline |
15 ~~~~~~~~~~~~~~~~~~~~~|~Vex~'a\isanewline |
16 ~~~~~~~~~~~~~~~~~~~~~|~Bex~{"}'v~binop{"}~~{"}('a,'v)expr{"}~~{"}('a,'v)expr{"}% |
16 ~~~~~~~~~~~~~~~~~~~~~|~Bex~{"}'v~binop{"}~~{"}('a,'v)expr{"}~~{"}('a,'v)expr{"}% |
17 \begin{isamarkuptext}% |
17 \begin{isamarkuptext}% |
18 \noindent |
18 \noindent |
19 The three constructors represent constants, variables and the combination of |
19 The three constructors represent constants, variables and the application of |
20 two subexpressions with a binary operation. |
20 a binary operation to two subexpressions. |
21 |
21 |
22 The value of an expression w.r.t.\ an environment that maps variables to |
22 The value of an expression w.r.t.\ an environment that maps variables to |
23 values is easily defined:% |
23 values is easily defined:% |
24 \end{isamarkuptext}% |
24 \end{isamarkuptext}% |
25 \isacommand{consts}~value~::~{"}('a~{\isasymRightarrow}~'v)~{\isasymRightarrow}~('a,'v)expr~{\isasymRightarrow}~'v{"}\isanewline |
25 \isacommand{consts}~value~::~{"}('a,'v)expr~{\isasymRightarrow}~('a~{\isasymRightarrow}~'v)~{\isasymRightarrow}~'v{"}\isanewline |
26 \isacommand{primrec}\isanewline |
26 \isacommand{primrec}\isanewline |
27 {"}value~env~(Cex~v)~=~v{"}\isanewline |
27 {"}value~(Cex~v)~env~=~v{"}\isanewline |
28 {"}value~env~(Vex~a)~=~env~a{"}\isanewline |
28 {"}value~(Vex~a)~env~=~env~a{"}\isanewline |
29 {"}value~env~(Bex~f~e1~e2)~=~f~(value~env~e1)~(value~env~e2){"}% |
29 {"}value~(Bex~f~e1~e2)~env~=~f~(value~e1~env)~(value~e2~env){"}% |
30 \begin{isamarkuptext}% |
30 \begin{isamarkuptext}% |
31 The stack machine has three instructions: load a constant value onto the |
31 The stack machine has three instructions: load a constant value onto the |
32 stack, load the contents of a certain address onto the stack, and apply a |
32 stack, load the contents of a certain address onto the stack, and apply a |
33 binary operation to the two topmost elements of the stack, replacing them by |
33 binary operation to the two topmost elements of the stack, replacing them by |
34 the result. As for \isa{expr}, addresses and values are type parameters:% |
34 the result. As for \isa{expr}, addresses and values are type parameters:% |
35 \end{isamarkuptext}% |
35 \end{isamarkuptext}% |
36 \isacommand{datatype}~('a,'v)~instr~=~Const~'v\isanewline |
36 \isacommand{datatype}~('a,'v)~instr~=~Const~'v\isanewline |
37 ~~~~~~~~~~~~~~~~~~~~~~~|~Load~'a\isanewline |
37 ~~~~~~~~~~~~~~~~~~~~~~~|~Load~'a\isanewline |
38 ~~~~~~~~~~~~~~~~~~~~~~~|~Apply~{"}'v~binop{"}% |
38 ~~~~~~~~~~~~~~~~~~~~~~~|~Apply~{"}'v~binop{"}% |
39 \begin{isamarkuptext}% |
39 \begin{isamarkuptext}% |
40 The execution of the stack machine is modelled by a function \isa{exec} |
40 The execution of the stack machine is modelled by a function |
41 that takes a store (modelled as a function from addresses to values, just |
41 \isa{exec} that takes a list of instructions, a store (modelled as a |
42 like the environment for evaluating expressions), a stack (modelled as a |
42 function from addresses to values, just like the environment for |
43 list) of values, and a list of instructions, and returns the stack at the end |
43 evaluating expressions), and a stack (modelled as a list) of values, |
44 of the execution---the store remains unchanged:% |
44 and returns the stack at the end of the execution---the store remains |
|
45 unchanged:% |
45 \end{isamarkuptext}% |
46 \end{isamarkuptext}% |
46 \isacommand{consts}~exec~::~{"}('a{\isasymRightarrow}'v)~{\isasymRightarrow}~'v~list~{\isasymRightarrow}~('a,'v)instr~list~{\isasymRightarrow}~'v~list{"}\isanewline |
47 \isacommand{consts}~exec~::~{"}('a,'v)instr~list~{\isasymRightarrow}~('a{\isasymRightarrow}'v)~{\isasymRightarrow}~'v~list~{\isasymRightarrow}~'v~list{"}\isanewline |
47 \isacommand{primrec}\isanewline |
48 \isacommand{primrec}\isanewline |
48 {"}exec~s~vs~[]~=~vs{"}\isanewline |
49 {"}exec~[]~s~vs~=~vs{"}\isanewline |
49 {"}exec~s~vs~(i\#is)~=~(case~i~of\isanewline |
50 {"}exec~(i\#is)~s~vs~=~(case~i~of\isanewline |
50 ~~~~Const~v~~{\isasymRightarrow}~exec~s~(v\#vs)~is\isanewline |
51 ~~~~Const~v~~{\isasymRightarrow}~exec~is~s~(v\#vs)\isanewline |
51 ~~|~Load~a~~~{\isasymRightarrow}~exec~s~((s~a)\#vs)~is\isanewline |
52 ~~|~Load~a~~~{\isasymRightarrow}~exec~is~s~((s~a)\#vs)\isanewline |
52 ~~|~Apply~f~~{\isasymRightarrow}~exec~s~(~(f~(hd~vs)~(hd(tl~vs)))\#(tl(tl~vs))~)~is){"}% |
53 ~~|~Apply~f~~{\isasymRightarrow}~exec~is~s~((f~(hd~vs)~(hd(tl~vs)))\#(tl(tl~vs)))){"}% |
53 \begin{isamarkuptext}% |
54 \begin{isamarkuptext}% |
54 \noindent |
55 \noindent |
55 Recall that \isa{hd} and \isa{tl} |
56 Recall that \isa{hd} and \isa{tl} |
56 return the first element and the remainder of a list. |
57 return the first element and the remainder of a list. |
57 Because all functions are total, \isa{hd} is defined even for the empty |
58 Because all functions are total, \isa{hd} is defined even for the empty |
70 {"}comp~(Bex~f~e1~e2)~=~(comp~e2)~@~(comp~e1)~@~[Apply~f]{"}% |
71 {"}comp~(Bex~f~e1~e2)~=~(comp~e2)~@~(comp~e1)~@~[Apply~f]{"}% |
71 \begin{isamarkuptext}% |
72 \begin{isamarkuptext}% |
72 Now we have to prove the correctness of the compiler, i.e.\ that the |
73 Now we have to prove the correctness of the compiler, i.e.\ that the |
73 execution of a compiled expression results in the value of the expression:% |
74 execution of a compiled expression results in the value of the expression:% |
74 \end{isamarkuptext}% |
75 \end{isamarkuptext}% |
75 \isacommand{theorem}~{"}exec~s~[]~(comp~e)~=~[value~s~e]{"}% |
76 \isacommand{theorem}~{"}exec~(comp~e)~s~[]~=~[value~e~s]{"}% |
76 \begin{isamarkuptext}% |
77 \begin{isamarkuptext}% |
77 \noindent |
78 \noindent |
78 This theorem needs to be generalized to% |
79 This theorem needs to be generalized to% |
79 \end{isamarkuptext}% |
80 \end{isamarkuptext}% |
80 \isacommand{theorem}~{"}{\isasymforall}vs.~exec~s~vs~(comp~e)~=~(value~s~e)~\#~vs{"}% |
81 \isacommand{theorem}~{"}{\isasymforall}vs.~exec~(comp~e)~s~vs~=~(value~e~s)~\#~vs{"}% |
81 \begin{isamarkuptxt}% |
82 \begin{isamarkuptxt}% |
82 \noindent |
83 \noindent |
83 which is proved by induction on \isa{e} followed by simplification, once |
84 which is proved by induction on \isa{e} followed by simplification, once |
84 we have the following lemma about executing the concatenation of two |
85 we have the following lemma about executing the concatenation of two |
85 instruction sequences:% |
86 instruction sequences:% |
86 \end{isamarkuptxt}% |
87 \end{isamarkuptxt}% |
87 \isacommand{lemma}~exec\_app[simp]:\isanewline |
88 \isacommand{lemma}~exec\_app[simp]:\isanewline |
88 ~~{"}{\isasymforall}vs.~exec~s~vs~(xs@ys)~=~exec~s~(exec~s~vs~xs)~ys{"}% |
89 ~~{"}{\isasymforall}vs.~exec~(xs@ys)~s~vs~=~exec~ys~s~(exec~xs~s~vs){"}% |
89 \begin{isamarkuptxt}% |
90 \begin{isamarkuptxt}% |
90 \noindent |
91 \noindent |
91 This requires induction on \isa{xs} and ordinary simplification for the |
92 This requires induction on \isa{xs} and ordinary simplification for the |
92 base cases. In the induction step, simplification leaves us with a formula |
93 base cases. In the induction step, simplification leaves us with a formula |
93 that contains two \isa{case}-expressions over instructions. Thus we add |
94 that contains two \isa{case}-expressions over instructions. Thus we add |