354 subsection \<open>Lebesgue-Borel measure\<close> |
354 subsection \<open>Lebesgue-Borel measure\<close> |
355 |
355 |
356 definition lborel :: "('a :: euclidean_space) measure" where |
356 definition lborel :: "('a :: euclidean_space) measure" where |
357 "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" |
357 "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" |
358 |
358 |
|
359 abbreviation lebesgue :: "'a::euclidean_space measure" |
|
360 where "lebesgue \<equiv> completion lborel" |
|
361 |
|
362 abbreviation lebesgue_on :: "'a set \<Rightarrow> 'a::euclidean_space measure" |
|
363 where "lebesgue_on \<Omega> \<equiv> restrict_space (completion lborel) \<Omega>" |
|
364 |
359 lemma |
365 lemma |
360 shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel" |
366 shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel" |
361 and space_lborel[simp]: "space lborel = space borel" |
367 and space_lborel[simp]: "space lborel = space borel" |
362 and measurable_lborel1[simp]: "measurable M lborel = measurable M borel" |
368 and measurable_lborel1[simp]: "measurable M lborel = measurable M borel" |
363 and measurable_lborel2[simp]: "measurable lborel M = measurable borel M" |
369 and measurable_lborel2[simp]: "measurable lborel M = measurable borel M" |
657 next |
663 next |
658 assume "\<not> integrable lborel f" with c show ?thesis |
664 assume "\<not> integrable lborel f" with c show ?thesis |
659 by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq) |
665 by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq) |
660 qed |
666 qed |
661 |
667 |
|
668 lemma |
|
669 fixes c :: "'a::euclidean_space \<Rightarrow> real" and t |
|
670 assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" |
|
671 defines "T == (\<lambda>x. t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j))" |
|
672 shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") |
|
673 and lebesgue_affine_measurable: "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" |
|
674 proof - |
|
675 have T_borel[measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" |
|
676 by (auto simp: T_def[abs_def]) |
|
677 { fix A :: "'a set" assume A: "A \<in> sets borel" |
|
678 then have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))) A = 0" |
|
679 unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto |
|
680 also have "\<dots> \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" |
|
681 using A c by (simp add: distr_completion emeasure_density nn_integral_cmult setprod_nonneg cong: distr_cong) |
|
682 finally have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" . } |
|
683 then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)" |
|
684 by (auto simp: null_sets_def) |
|
685 |
|
686 show "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" |
|
687 by (rule completion.measurable_completion2) (auto simp: eq measurable_completion) |
|
688 |
|
689 have "lebesgue = completion (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>)))" |
|
690 using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def]) |
|
691 also have "\<dots> = density (completion (distr lebesgue lborel T)) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" |
|
692 using c by (auto intro!: always_eventually setprod_pos completion_density_eq simp: distr_completion cong: distr_cong) |
|
693 also have "\<dots> = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" |
|
694 by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion) |
|
695 finally show "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" . |
|
696 qed |
|
697 |
|
698 lemma |
|
699 fixes m :: real and \<delta> :: "'a::euclidean_space" |
|
700 defines "T r d x \<equiv> r *\<^sub>R x + d" |
|
701 shows emeasure_lebesgue_affine: "emeasure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * emeasure lebesgue S" (is ?e) |
|
702 and measure_lebesgue_affine: "measure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * measure lebesgue S" (is ?m) |
|
703 proof - |
|
704 show ?e |
|
705 proof cases |
|
706 assume "m = 0" then show ?thesis |
|
707 by (simp add: image_constant_conv T_def[abs_def]) |
|
708 next |
|
709 let ?T = "T m \<delta>" and ?T' = "T (1 / m) (- ((1/m) *\<^sub>R \<delta>))" |
|
710 assume "m \<noteq> 0" |
|
711 then have s_comp_s: "?T' \<circ> ?T = id" "?T \<circ> ?T' = id" |
|
712 by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right) |
|
713 then have "inv ?T' = ?T" "bij ?T'" |
|
714 by (auto intro: inv_unique_comp o_bij) |
|
715 then have eq: "T m \<delta> ` S = T (1 / m) ((-1/m) *\<^sub>R \<delta>) -` S \<inter> space lebesgue" |
|
716 using bij_vimage_eq_inv_image[OF \<open>bij ?T'\<close>, of S] by auto |
|
717 |
|
718 have trans_eq_T: "(\<lambda>x. \<delta> + (\<Sum>j\<in>Basis. (m * (x \<bullet> j)) *\<^sub>R j)) = T m \<delta>" for m \<delta> |
|
719 unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_setsum_right[symmetric] |
|
720 by (auto simp add: euclidean_representation ac_simps) |
|
721 |
|
722 have T[measurable]: "T r d \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" for r d |
|
723 using lebesgue_affine_measurable[of "\<lambda>_. r" d] |
|
724 by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def]) |
|
725 |
|
726 show ?thesis |
|
727 proof cases |
|
728 assume "S \<in> sets lebesgue" with \<open>m \<noteq> 0\<close> show ?thesis |
|
729 unfolding eq |
|
730 apply (subst lebesgue_affine_euclidean[of "\<lambda>_. m" \<delta>]) |
|
731 apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr |
|
732 del: space_completion emeasure_completion) |
|
733 apply (simp add: vimage_comp s_comp_s setprod_constant) |
|
734 done |
|
735 next |
|
736 assume "S \<notin> sets lebesgue" |
|
737 moreover have "?T ` S \<notin> sets lebesgue" |
|
738 proof |
|
739 assume "?T ` S \<in> sets lebesgue" |
|
740 then have "?T -` (?T ` S) \<inter> space lebesgue \<in> sets lebesgue" |
|
741 by (rule measurable_sets[OF T]) |
|
742 also have "?T -` (?T ` S) \<inter> space lebesgue = S" |
|
743 by (simp add: vimage_comp s_comp_s eq) |
|
744 finally show False using \<open>S \<notin> sets lebesgue\<close> by auto |
|
745 qed |
|
746 ultimately show ?thesis |
|
747 by (simp add: emeasure_notin_sets) |
|
748 qed |
|
749 qed |
|
750 show ?m |
|
751 unfolding measure_def \<open>?e\<close> by (simp add: enn2real_mult setprod_nonneg) |
|
752 qed |
|
753 |
662 lemma divideR_right: |
754 lemma divideR_right: |
663 fixes x y :: "'a::real_normed_vector" |
755 fixes x y :: "'a::real_normed_vector" |
664 shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x" |
756 shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x" |
665 using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp |
757 using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp |
666 |
758 |