src/HOL/Set.thy
changeset 55143 04448228381d
parent 54998 8601434fa334
child 55775 1557a391a858
equal deleted inserted replaced
55142:378ae9e46175 55143:04448228381d
  1575 
  1575 
  1576 lemma Pow_empty [simp]: "Pow {} = {{}}"
  1576 lemma Pow_empty [simp]: "Pow {} = {{}}"
  1577   by (auto simp add: Pow_def)
  1577   by (auto simp add: Pow_def)
  1578 
  1578 
  1579 lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
  1579 lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
  1580   by (blast intro: image_eqI [where ?x = "u - {a}", standard])
  1580   by (blast intro: image_eqI [where ?x = "u - {a}" for u])
  1581 
  1581 
  1582 lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
  1582 lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
  1583   by (blast intro: exI [where ?x = "- u", standard])
  1583   by (blast intro: exI [where ?x = "- u" for u])
  1584 
  1584 
  1585 lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
  1585 lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
  1586   by blast
  1586   by blast
  1587 
  1587 
  1588 lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
  1588 lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"