src/HOL/Probability/Independent_Family.thy
changeset 47694 05663f75964c
parent 46731 5302e932d1e5
child 49772 75660d89c339
equal deleted inserted replaced
47693:64023cf4d148 47694:05663f75964c
     3 *)
     3 *)
     4 
     4 
     5 header {* Independent families of events, event sets, and random variables *}
     5 header {* Independent families of events, event sets, and random variables *}
     6 
     6 
     7 theory Independent_Family
     7 theory Independent_Family
     8   imports Probability_Measure
     8   imports Probability_Measure Infinite_Product_Measure
     9 begin
     9 begin
    10 
    10 
    11 lemma INT_decseq_offset:
    11 lemma INT_decseq_offset:
    12   assumes "decseq F"
    12   assumes "decseq F"
    13   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
    13   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
    42     indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
    42     indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
    43 
    43 
    44 definition (in prob_space)
    44 definition (in prob_space)
    45   "indep_var Ma A Mb B \<longleftrightarrow> indep_vars (bool_case Ma Mb) (bool_case A B) UNIV"
    45   "indep_var Ma A Mb B \<longleftrightarrow> indep_vars (bool_case Ma Mb) (bool_case A B) UNIV"
    46 
    46 
    47 lemma (in prob_space) indep_sets_cong[cong]:
    47 lemma (in prob_space) indep_sets_cong:
    48   "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
    48   "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
    49   by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
    49   by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
    50 
    50 
    51 lemma (in prob_space) indep_sets_singleton_iff_indep_events:
    51 lemma (in prob_space) indep_sets_singleton_iff_indep_events:
    52   "indep_sets (\<lambda>i. {F i}) I \<longleftrightarrow> indep_events F I"
    52   "indep_sets (\<lambda>i. {F i}) I \<longleftrightarrow> indep_events F I"
   133     and indep_setD_ev2: "B \<subseteq> events"
   133     and indep_setD_ev2: "B \<subseteq> events"
   134   using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
   134   using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
   135 
   135 
   136 lemma (in prob_space) indep_sets_dynkin:
   136 lemma (in prob_space) indep_sets_dynkin:
   137   assumes indep: "indep_sets F I"
   137   assumes indep: "indep_sets F I"
   138   shows "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) I"
   138   shows "indep_sets (\<lambda>i. dynkin (space M) (F i)) I"
   139     (is "indep_sets ?F I")
   139     (is "indep_sets ?F I")
   140 proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
   140 proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
   141   fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
   141   fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
   142   with indep have "indep_sets F J"
   142   with indep have "indep_sets F J"
   143     by (subst (asm) indep_sets_finite_index_sets) auto
   143     by (subst (asm) indep_sets_finite_index_sets) auto
   191             with J show ?thesis
   191             with J show ?thesis
   192               by (intro indep_setsD[OF G(1)]) auto
   192               by (intro indep_setsD[OF G(1)]) auto
   193           qed
   193           qed
   194         qed }
   194         qed }
   195       note indep_sets_insert = this
   195       note indep_sets_insert = this
   196       have "dynkin_system \<lparr> space = space M, sets = ?D \<rparr>"
   196       have "dynkin_system (space M) ?D"
   197       proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
   197       proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
   198         show "indep_sets (G(j := {{}})) K"
   198         show "indep_sets (G(j := {{}})) K"
   199           by (rule indep_sets_insert) auto
   199           by (rule indep_sets_insert) auto
   200       next
   200       next
   201         fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
   201         fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
   204           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
   204           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
   205           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   205           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   206             using G by auto
   206             using G by auto
   207           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   207           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   208               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
   208               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
   209             using A_sets sets_into_space X `J \<noteq> {}`
   209             using A_sets sets_into_space[of _ M] X `J \<noteq> {}`
   210             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   210             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   211           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
   211           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
   212             using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
   212             using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
   213             by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
   213             by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
   214           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   214           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   262           ultimately
   262           ultimately
   263           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
   263           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
   264             by (auto dest!: sums_unique)
   264             by (auto dest!: sums_unique)
   265         qed (insert F, auto)
   265         qed (insert F, auto)
   266       qed (insert sets_into_space, auto)
   266       qed (insert sets_into_space, auto)
   267       then have mono: "sets (dynkin \<lparr>space = space M, sets = G j\<rparr>) \<subseteq>
   267       then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
   268         sets \<lparr>space = space M, sets = {E \<in> events. indep_sets (G(j := {E})) K}\<rparr>"
   268       proof (rule dynkin_system.dynkin_subset, safe)
   269       proof (rule dynkin_system.dynkin_subset, simp_all cong del: indep_sets_cong, safe)
       
   270         fix X assume "X \<in> G j"
   269         fix X assume "X \<in> G j"
   271         then show "X \<in> events" using G `j \<in> K` by auto
   270         then show "X \<in> events" using G `j \<in> K` by auto
   272         from `indep_sets G K`
   271         from `indep_sets G K`
   273         show "indep_sets (G(j := {X})) K"
   272         show "indep_sets (G(j := {X})) K"
   274           by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
   273           by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
   290           with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   289           with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   291           with J show ?thesis
   290           with J show ?thesis
   292             by (intro indep_setsD[OF G(1)]) auto
   291             by (intro indep_setsD[OF G(1)]) auto
   293         qed
   292         qed
   294       qed
   293       qed
   295       then have "indep_sets (G(j:=sets (dynkin \<lparr>space = space M, sets = G j\<rparr>))) K"
   294       then have "indep_sets (G(j := dynkin (space M) (G j))) K"
   296         by (rule indep_sets_mono_sets) (insert mono, auto)
   295         by (rule indep_sets_mono_sets) (insert mono, auto)
   297       then show ?case
   296       then show ?case
   298         by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
   297         by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
   299     qed (insert `indep_sets F K`, simp) }
   298     qed (insert `indep_sets F K`, simp) }
   300   from this[OF `indep_sets F J` `finite J` subset_refl]
   299   from this[OF `indep_sets F J` `finite J` subset_refl]
   301   show "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) J"
   300   show "indep_sets ?F J"
   302     by (rule indep_sets_mono_sets) auto
   301     by (rule indep_sets_mono_sets) auto
   303 qed
   302 qed
   304 
   303 
   305 lemma (in prob_space) indep_sets_sigma:
   304 lemma (in prob_space) indep_sets_sigma:
   306   assumes indep: "indep_sets F I"
   305   assumes indep: "indep_sets F I"
   307   assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
   306   assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
   308   shows "indep_sets (\<lambda>i. sets (sigma \<lparr> space = space M, sets = F i \<rparr>)) I"
   307   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
   309 proof -
   308 proof -
   310   from indep_sets_dynkin[OF indep]
   309   from indep_sets_dynkin[OF indep]
   311   show ?thesis
   310   show ?thesis
   312   proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
   311   proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
   313     fix i assume "i \<in> I"
   312     fix i assume "i \<in> I"
   314     with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
   313     with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
   315     with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
   314     with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
   316   qed
   315   qed
   317 qed
   316 qed
   318 
   317 
   319 lemma (in prob_space) indep_sets_sigma_sets:
       
   320   assumes "indep_sets F I"
       
   321   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
       
   322   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
       
   323   using indep_sets_sigma[OF assms] by (simp add: sets_sigma)
       
   324 
       
   325 lemma (in prob_space) indep_sets_sigma_sets_iff:
   318 lemma (in prob_space) indep_sets_sigma_sets_iff:
   326   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
   319   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
   327   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
   320   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
   328 proof
   321 proof
   329   assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
   322   assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
   330     by (rule indep_sets_sigma_sets) fact
   323     by (rule indep_sets_sigma) fact
   331 next
   324 next
   332   assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
   325   assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
   333     by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
   326     by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
   334 qed
   327 qed
   335 
   328 
   359   qed
   352   qed
   360 qed
   353 qed
   361 
   354 
   362 lemma (in prob_space) indep_set_sigma_sets:
   355 lemma (in prob_space) indep_set_sigma_sets:
   363   assumes "indep_set A B"
   356   assumes "indep_set A B"
   364   assumes A: "Int_stable \<lparr> space = space M, sets = A \<rparr>"
   357   assumes A: "Int_stable A" and B: "Int_stable B"
   365   assumes B: "Int_stable \<lparr> space = space M, sets = B \<rparr>"
       
   366   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
   358   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
   367 proof -
   359 proof -
   368   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
   360   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
   369   proof (rule indep_sets_sigma_sets)
   361   proof (rule indep_sets_sigma)
   370     show "indep_sets (bool_case A B) UNIV"
   362     show "indep_sets (bool_case A B) UNIV"
   371       by (rule `indep_set A B`[unfolded indep_set_def])
   363       by (rule `indep_set A B`[unfolded indep_set_def])
   372     fix i show "Int_stable \<lparr>space = space M, sets = case i of True \<Rightarrow> A | False \<Rightarrow> B\<rparr>"
   364     fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
   373       using A B by (cases i) auto
   365       using A B by (cases i) auto
   374   qed
   366   qed
   375   then show ?thesis
   367   then show ?thesis
   376     unfolding indep_set_def
   368     unfolding indep_set_def
   377     by (rule indep_sets_mono_sets) (auto split: bool.split)
   369     by (rule indep_sets_mono_sets) (auto split: bool.split)
   378 qed
   370 qed
   379 
   371 
   380 lemma (in prob_space) indep_sets_collect_sigma:
   372 lemma (in prob_space) indep_sets_collect_sigma:
   381   fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
   373   fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
   382   assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
   374   assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
   383   assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable \<lparr>space = space M, sets = E i\<rparr>"
   375   assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable (E i)"
   384   assumes disjoint: "disjoint_family_on I J"
   376   assumes disjoint: "disjoint_family_on I J"
   385   shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
   377   shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
   386 proof -
   378 proof -
   387   let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
   379   let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
   388 
   380 
   389   from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
   381   from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
   390     unfolding indep_sets_def by auto
   382     unfolding indep_sets_def by auto
   391   { fix j
   383   { fix j
   392     let ?S = "sigma \<lparr> space = space M, sets = (\<Union>i\<in>I j. E i) \<rparr>"
   384     let ?S = "sigma_sets (space M) (\<Union>i\<in>I j. E i)"
   393     assume "j \<in> J"
   385     assume "j \<in> J"
   394     from E[OF this] interpret S: sigma_algebra ?S
   386     from E[OF this] interpret S: sigma_algebra "space M" ?S
   395       using sets_into_space by (intro sigma_algebra_sigma) auto
   387       using sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
   396 
   388 
   397     have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
   389     have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
   398     proof (rule sigma_sets_eqI)
   390     proof (rule sigma_sets_eqI)
   399       fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
   391       fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
   400       then guess i ..
   392       then guess i ..
   401       then show "A \<in> sigma_sets (space M) (?E j)"
   393       then show "A \<in> sigma_sets (space M) (?E j)"
   402         by (auto intro!: sigma_sets.intros exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
   394         by (auto intro!: sigma_sets.intros(2-) exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
   403     next
   395     next
   404       fix A assume "A \<in> ?E j"
   396       fix A assume "A \<in> ?E j"
   405       then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
   397       then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
   406         and A: "A = (\<Inter>k\<in>K. E' k)"
   398         and A: "A = (\<Inter>k\<in>K. E' k)"
   407         by auto
   399         by auto
   408       then have "A \<in> sets ?S" unfolding A
   400       then have "A \<in> ?S" unfolding A
   409         by (safe intro!: S.finite_INT)
   401         by (safe intro!: S.finite_INT) auto
   410            (auto simp: sets_sigma intro!: sigma_sets.Basic)
       
   411       then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
   402       then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
   412         by (simp add: sets_sigma)
   403         by simp
   413     qed }
   404     qed }
   414   moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
   405   moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
   415   proof (rule indep_sets_sigma_sets)
   406   proof (rule indep_sets_sigma)
   416     show "indep_sets ?E J"
   407     show "indep_sets ?E J"
   417     proof (intro indep_setsI)
   408     proof (intro indep_setsI)
   418       fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force  intro!: finite_INT)
   409       fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force  intro!: finite_INT)
   419     next
   410     next
   420       fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
   411       fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
   458         using K L E' by (auto simp add: A intro!: setprod_cong indep_setsD[OF indep, symmetric]) blast
   449         using K L E' by (auto simp add: A intro!: setprod_cong indep_setsD[OF indep, symmetric]) blast
   459       finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
   450       finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
   460     qed
   451     qed
   461   next
   452   next
   462     fix j assume "j \<in> J"
   453     fix j assume "j \<in> J"
   463     show "Int_stable \<lparr> space = space M, sets = ?E j \<rparr>"
   454     show "Int_stable (?E j)"
   464     proof (rule Int_stableI)
   455     proof (rule Int_stableI)
   465       fix a assume "a \<in> ?E j" then obtain Ka Ea
   456       fix a assume "a \<in> ?E j" then obtain Ka Ea
   466         where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
   457         where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
   467       fix b assume "b \<in> ?E j" then obtain Kb Eb
   458       fix b assume "b \<in> ?E j" then obtain Kb Eb
   468         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
   459         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
   480 definition (in prob_space) terminal_events where
   471 definition (in prob_space) terminal_events where
   481   "terminal_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   472   "terminal_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   482 
   473 
   483 lemma (in prob_space) terminal_events_sets:
   474 lemma (in prob_space) terminal_events_sets:
   484   assumes A: "\<And>i. A i \<subseteq> events"
   475   assumes A: "\<And>i. A i \<subseteq> events"
   485   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   476   assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
   486   assumes X: "X \<in> terminal_events A"
   477   assumes X: "X \<in> terminal_events A"
   487   shows "X \<in> events"
   478   shows "X \<in> events"
   488 proof -
   479 proof -
   489   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   480   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   490   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   481   interpret A: sigma_algebra "space M" "A i" for i by fact
   491   from X have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: terminal_events_def)
   482   from X have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: terminal_events_def)
   492   from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   483   from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   493   then show "X \<in> events"
   484   then show "X \<in> events"
   494     by induct (insert A, auto)
   485     by induct (insert A, auto)
   495 qed
   486 qed
   496 
   487 
   497 lemma (in prob_space) sigma_algebra_terminal_events:
   488 lemma (in prob_space) sigma_algebra_terminal_events:
   498   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   489   assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
   499   shows "sigma_algebra \<lparr> space = space M, sets = terminal_events A \<rparr>"
   490   shows "sigma_algebra (space M) (terminal_events A)"
   500   unfolding terminal_events_def
   491   unfolding terminal_events_def
   501 proof (simp add: sigma_algebra_iff2, safe)
   492 proof (simp add: sigma_algebra_iff2, safe)
   502   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   493   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   503   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   494   interpret A: sigma_algebra "space M" "A i" for i by fact
   504   { fix X x assume "X \<in> ?A" "x \<in> X"
   495   { fix X x assume "X \<in> ?A" "x \<in> X"
   505     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
   496     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
   506     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   497     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   507     then have "X \<subseteq> space M"
   498     then have "X \<subseteq> space M"
   508       by induct (insert A.sets_into_space, auto)
   499       by induct (insert A.sets_into_space, auto)
   513 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
   504 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
   514 
   505 
   515 lemma (in prob_space) kolmogorov_0_1_law:
   506 lemma (in prob_space) kolmogorov_0_1_law:
   516   fixes A :: "nat \<Rightarrow> 'a set set"
   507   fixes A :: "nat \<Rightarrow> 'a set set"
   517   assumes A: "\<And>i. A i \<subseteq> events"
   508   assumes A: "\<And>i. A i \<subseteq> events"
   518   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   509   assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
   519   assumes indep: "indep_sets A UNIV"
   510   assumes indep: "indep_sets A UNIV"
   520   and X: "X \<in> terminal_events A"
   511   and X: "X \<in> terminal_events A"
   521   shows "prob X = 0 \<or> prob X = 1"
   512   shows "prob X = 0 \<or> prob X = 1"
   522 proof -
   513 proof -
   523   let ?D = "\<lparr> space = space M, sets = {D \<in> events. prob (X \<inter> D) = prob X * prob D} \<rparr>"
   514   let ?D = "{D \<in> events. prob (X \<inter> D) = prob X * prob D}"
   524   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   515   interpret A: sigma_algebra "space M" "A i" for i by fact
   525   interpret T: sigma_algebra "\<lparr> space = space M, sets = terminal_events A \<rparr>"
   516   interpret T: sigma_algebra "space M" "terminal_events A"
   526     by (rule sigma_algebra_terminal_events) fact
   517     by (rule sigma_algebra_terminal_events) fact
   527   have "X \<subseteq> space M" using T.space_closed X by auto
   518   have "X \<subseteq> space M" using T.space_closed X by auto
   528 
   519 
   529   have X_in: "X \<in> events"
   520   have X_in: "X \<in> events"
   530     by (rule terminal_events_sets) fact+
   521     by (rule terminal_events_sets) fact+
   531 
   522 
   532   interpret D: dynkin_system ?D
   523   interpret D: dynkin_system "space M" ?D
   533   proof (rule dynkin_systemI)
   524   proof (rule dynkin_systemI)
   534     fix D assume "D \<in> sets ?D" then show "D \<subseteq> space ?D"
   525     fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
   535       using sets_into_space by auto
   526       using sets_into_space by auto
   536   next
   527   next
   537     show "space ?D \<in> sets ?D"
   528     show "space M \<in> ?D"
   538       using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
   529       using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
   539   next
   530   next
   540     fix A assume A: "A \<in> sets ?D"
   531     fix A assume A: "A \<in> ?D"
   541     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
   532     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
   542       using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
   533       using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
   543     also have "\<dots> = prob X - prob (X \<inter> A)"
   534     also have "\<dots> = prob X - prob (X \<inter> A)"
   544       using X_in A by (intro finite_measure_Diff) auto
   535       using X_in A by (intro finite_measure_Diff) auto
   545     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
   536     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
   546       using A prob_space by auto
   537       using A prob_space by auto
   547     also have "\<dots> = prob X * prob (space M - A)"
   538     also have "\<dots> = prob X * prob (space M - A)"
   548       using X_in A sets_into_space
   539       using X_in A sets_into_space
   549       by (subst finite_measure_Diff) (auto simp: field_simps)
   540       by (subst finite_measure_Diff) (auto simp: field_simps)
   550     finally show "space ?D - A \<in> sets ?D"
   541     finally show "space M - A \<in> ?D"
   551       using A `X \<subseteq> space M` by auto
   542       using A `X \<subseteq> space M` by auto
   552   next
   543   next
   553     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> sets ?D"
   544     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
   554     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
   545     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
   555       by auto
   546       by auto
   556     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
   547     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
   557     proof (rule finite_measure_UNION)
   548     proof (rule finite_measure_UNION)
   558       show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
   549       show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
   564       by simp
   555       by simp
   565     moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
   556     moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
   566       by (intro sums_mult finite_measure_UNION F dis)
   557       by (intro sums_mult finite_measure_UNION F dis)
   567     ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
   558     ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
   568       by (auto dest!: sums_unique)
   559       by (auto dest!: sums_unique)
   569     with F show "(\<Union>i. F i) \<in> sets ?D"
   560     with F show "(\<Union>i. F i) \<in> ?D"
   570       by auto
   561       by auto
   571   qed
   562   qed
   572 
   563 
   573   { fix n
   564   { fix n
   574     have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) UNIV"
   565     have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) UNIV"
   577         by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
   568         by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
   578       with indep show "indep_sets A ?U" by simp
   569       with indep show "indep_sets A ?U" by simp
   579       show "disjoint_family (bool_case {..n} {Suc n..})"
   570       show "disjoint_family (bool_case {..n} {Suc n..})"
   580         unfolding disjoint_family_on_def by (auto split: bool.split)
   571         unfolding disjoint_family_on_def by (auto split: bool.split)
   581       fix m
   572       fix m
   582       show "Int_stable \<lparr>space = space M, sets = A m\<rparr>"
   573       show "Int_stable (A m)"
   583         unfolding Int_stable_def using A.Int by auto
   574         unfolding Int_stable_def using A.Int by auto
   584     qed
   575     qed
   585     also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) =
   576     also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) =
   586       bool_case (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   577       bool_case (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   587       by (auto intro!: ext split: bool.split)
   578       by (auto intro!: ext split: bool.split)
   588     finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   579     finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   589       unfolding indep_set_def by simp
   580       unfolding indep_set_def by simp
   590 
   581 
   591     have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> sets ?D"
   582     have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> ?D"
   592     proof (simp add: subset_eq, rule)
   583     proof (simp add: subset_eq, rule)
   593       fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   584       fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   594       have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
   585       have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
   595         using X unfolding terminal_events_def by simp
   586         using X unfolding terminal_events_def by simp
   596       from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
   587       from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
   597       show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
   588       show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
   598         by (auto simp add: ac_simps)
   589         by (auto simp add: ac_simps)
   599     qed }
   590     qed }
   600   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> sets ?D" (is "?A \<subseteq> _")
   591   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
   601     by auto
   592     by auto
   602 
   593 
   603   have "sigma \<lparr> space = space M, sets = ?A \<rparr> =
   594   note `X \<in> terminal_events A`
   604     dynkin \<lparr> space = space M, sets = ?A \<rparr>" (is "sigma ?UA = dynkin ?UA")
   595   also {
       
   596     have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
       
   597       by (intro sigma_sets_subseteq UN_mono) auto
       
   598    then have "terminal_events A \<subseteq> sigma_sets (space M) ?A"
       
   599       unfolding terminal_events_def by auto }
       
   600   also have "sigma_sets (space M) ?A = dynkin (space M) ?A"
   605   proof (rule sigma_eq_dynkin)
   601   proof (rule sigma_eq_dynkin)
   606     { fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   602     { fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   607       then have "B \<subseteq> space M"
   603       then have "B \<subseteq> space M"
   608         by induct (insert A sets_into_space, auto) }
   604         by induct (insert A sets_into_space[of _ M], auto) }
   609     then show "sets ?UA \<subseteq> Pow (space ?UA)" by auto
   605     then show "?A \<subseteq> Pow (space M)" by auto
   610     show "Int_stable ?UA"
   606     show "Int_stable ?A"
   611     proof (rule Int_stableI)
   607     proof (rule Int_stableI)
   612       fix a assume "a \<in> ?A" then guess n .. note a = this
   608       fix a assume "a \<in> ?A" then guess n .. note a = this
   613       fix b assume "b \<in> ?A" then guess m .. note b = this
   609       fix b assume "b \<in> ?A" then guess m .. note b = this
   614       interpret Amn: sigma_algebra "sigma \<lparr>space = space M, sets = (\<Union>i\<in>{..max m n}. A i)\<rparr>"
   610       interpret Amn: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   615         using A sets_into_space by (intro sigma_algebra_sigma) auto
   611         using A sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
   616       have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   612       have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   617         by (intro sigma_sets_subseteq UN_mono) auto
   613         by (intro sigma_sets_subseteq UN_mono) auto
   618       with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   614       with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   619       moreover
   615       moreover
   620       have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   616       have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   621         by (intro sigma_sets_subseteq UN_mono) auto
   617         by (intro sigma_sets_subseteq UN_mono) auto
   622       with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   618       with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   623       ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   619       ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   624         using Amn.Int[of a b] by (simp add: sets_sigma)
   620         using Amn.Int[of a b] by simp
   625       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
   621       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
   626     qed
   622     qed
   627   qed
   623   qed
   628   moreover have "sets (dynkin ?UA) \<subseteq> sets ?D"
   624   also have "dynkin (space M) ?A \<subseteq> ?D"
   629   proof (rule D.dynkin_subset)
   625     using `?A \<subseteq> ?D` by (auto intro!: D.dynkin_subset)
   630     show "sets ?UA \<subseteq> sets ?D" using `?A \<subseteq> sets ?D` by auto
   626   finally show ?thesis by auto
   631   qed simp
       
   632   ultimately have "sets (sigma ?UA) \<subseteq> sets ?D" by simp
       
   633   moreover
       
   634   have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
       
   635     by (intro sigma_sets_subseteq UN_mono) (auto intro: sigma_sets.Basic)
       
   636   then have "terminal_events A \<subseteq> sets (sigma ?UA)"
       
   637     unfolding sets_sigma terminal_events_def by auto
       
   638   moreover note `X \<in> terminal_events A`
       
   639   ultimately have "X \<in> sets ?D" by auto
       
   640   then show ?thesis by auto
       
   641 qed
   627 qed
   642 
   628 
   643 lemma (in prob_space) borel_0_1_law:
   629 lemma (in prob_space) borel_0_1_law:
   644   fixes F :: "nat \<Rightarrow> 'a set"
   630   fixes F :: "nat \<Rightarrow> 'a set"
   645   assumes F: "range F \<subseteq> events" "indep_events F UNIV"
   631   assumes F: "range F \<subseteq> events" "indep_events F UNIV"
   646   shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
   632   shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
   647 proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
   633 proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
   648   show "\<And>i. sigma_sets (space M) {F i} \<subseteq> events"
   634   show "\<And>i. sigma_sets (space M) {F i} \<subseteq> events"
   649     using F(1) sets_into_space
   635     using F(1) sets_into_space
   650     by (subst sigma_sets_singleton) auto
   636     by (subst sigma_sets_singleton) auto
   651   { fix i show "sigma_algebra \<lparr>space = space M, sets = sigma_sets (space M) {F i}\<rparr>"
   637   { fix i show "sigma_algebra (space M) (sigma_sets (space M) {F i})"
   652       using sigma_algebra_sigma[of "\<lparr>space = space M, sets = {F i}\<rparr>"] F sets_into_space
   638       using sigma_algebra_sigma_sets[of "{F i}" "space M"] F sets_into_space
   653       by (auto simp add: sigma_def) }
   639       by auto }
   654   show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
   640   show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
   655   proof (rule indep_sets_sigma_sets)
   641   proof (rule indep_sets_sigma)
   656     show "indep_sets (\<lambda>i. {F i}) UNIV"
   642     show "indep_sets (\<lambda>i. {F i}) UNIV"
   657       unfolding indep_sets_singleton_iff_indep_events by fact
   643       unfolding indep_sets_singleton_iff_indep_events by fact
   658     fix i show "Int_stable \<lparr>space = space M, sets = {F i}\<rparr>"
   644     fix i show "Int_stable {F i}"
   659       unfolding Int_stable_def by simp
   645       unfolding Int_stable_def by simp
   660   qed
   646   qed
   661   let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
   647   let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
   662   show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> terminal_events (\<lambda>i. sigma_sets (space M) {F i})"
   648   show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> terminal_events (\<lambda>i. sigma_sets (space M) {F i})"
   663     unfolding terminal_events_def
   649     unfolding terminal_events_def
   664   proof
   650   proof
   665     fix j
   651     fix j
   666     interpret S: sigma_algebra "sigma \<lparr> space = space M, sets = (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})\<rparr>"
   652     interpret S: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
   667       using order_trans[OF F(1) space_closed]
   653       using order_trans[OF F(1) space_closed]
   668       by (intro sigma_algebra_sigma) (simp add: sigma_sets_singleton subset_eq)
   654       by (intro sigma_algebra_sigma_sets) (simp add: sigma_sets_singleton subset_eq)
   669     have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
   655     have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
   670       by (intro decseq_SucI INT_decseq_offset UN_mono) auto
   656       by (intro decseq_SucI INT_decseq_offset UN_mono) auto
   671     also have "\<dots> \<in> sets (sigma \<lparr> space = space M, sets = (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})\<rparr>)"
   657     also have "\<dots> \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
   672       using order_trans[OF F(1) space_closed]
   658       using order_trans[OF F(1) space_closed]
   673       by (safe intro!: S.countable_INT S.countable_UN)
   659       by (safe intro!: S.countable_INT S.countable_UN)
   674          (auto simp: sets_sigma sigma_sets_singleton intro!: sigma_sets.Basic bexI)
   660          (auto simp: sigma_sets_singleton intro!: sigma_sets.Basic bexI)
   675     finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
   661     finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
   676       by (simp add: sets_sigma)
   662       by simp
   677   qed
   663   qed
   678 qed
   664 qed
   679 
   665 
   680 lemma (in prob_space) indep_sets_finite:
   666 lemma (in prob_space) indep_sets_finite:
   681   assumes I: "I \<noteq> {}" "finite I"
   667   assumes I: "I \<noteq> {}" "finite I"
   708 qed
   694 qed
   709 
   695 
   710 lemma (in prob_space) indep_vars_finite:
   696 lemma (in prob_space) indep_vars_finite:
   711   fixes I :: "'i set"
   697   fixes I :: "'i set"
   712   assumes I: "I \<noteq> {}" "finite I"
   698   assumes I: "I \<noteq> {}" "finite I"
   713     and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (sigma (M' i)) (X i)"
   699     and M': "\<And>i. i \<in> I \<Longrightarrow> sets (M' i) = sigma_sets (space (M' i)) (E i)"
   714     and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (M' i)"
   700     and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (M' i) (X i)"
   715     and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> sets (M' i)"
   701     and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (E i)"
   716   shows "indep_vars (\<lambda>i. sigma (M' i)) X I \<longleftrightarrow>
   702     and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> E i" and closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M' i))"
   717     (\<forall>A\<in>(\<Pi> i\<in>I. sets (M' i)). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
   703   shows "indep_vars M' X I \<longleftrightarrow>
       
   704     (\<forall>A\<in>(\<Pi> i\<in>I. E i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
   718 proof -
   705 proof -
   719   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
   706   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
   720     unfolding measurable_def by simp
   707     unfolding measurable_def by simp
   721 
   708 
   722   { fix i assume "i\<in>I"
   709   { fix i assume "i\<in>I"
   723     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (sigma (M' i))}
   710     from closed[OF `i \<in> I`]
   724       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   711     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
   725       unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`]
   712       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
       
   713       unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`, symmetric] M'[OF `i \<in> I`]
   726       by (subst sigma_sets_sigma_sets_eq) auto }
   714       by (subst sigma_sets_sigma_sets_eq) auto }
   727   note this[simp]
   715   note sigma_sets_X = this
   728 
   716 
   729   { fix i assume "i\<in>I"
   717   { fix i assume "i\<in>I"
   730     have "Int_stable \<lparr>space = space M, sets = {X i -` A \<inter> space M |A. A \<in> sets (M' i)}\<rparr>"
   718     have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
   731     proof (rule Int_stableI)
   719     proof (rule Int_stableI)
   732       fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   720       fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   733       then obtain A where "a = X i -` A \<inter> space M" "A \<in> sets (M' i)" by auto
   721       then obtain A where "a = X i -` A \<inter> space M" "A \<in> E i" by auto
   734       moreover
   722       moreover
   735       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   723       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   736       then obtain B where "b = X i -` B \<inter> space M" "B \<in> sets (M' i)" by auto
   724       then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
   737       moreover
   725       moreover
   738       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
   726       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
   739       moreover note Int_stable[OF `i \<in> I`]
   727       moreover note Int_stable[OF `i \<in> I`]
   740       ultimately
   728       ultimately
   741       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   729       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   742         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
   730         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
   743     qed }
   731     qed }
   744   note indep_sets_sigma_sets_iff[OF this, simp]
   732   note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
   745 
   733 
   746   { fix i assume "i \<in> I"
   734   { fix i assume "i \<in> I"
   747     { fix A assume "A \<in> sets (M' i)"
   735     { fix A assume "A \<in> E i"
   748       then have "A \<in> sets (sigma (M' i))" by (auto simp: sets_sigma intro: sigma_sets.Basic)
   736       with M'[OF `i \<in> I`] have "A \<in> sets (M' i)" by auto
   749       moreover
   737       moreover
   750       from rv[OF `i\<in>I`] have "X i \<in> measurable M (sigma (M' i))" by auto
   738       from rv[OF `i\<in>I`] have "X i \<in> measurable M (M' i)" by auto
   751       ultimately
   739       ultimately
   752       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
   740       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
   753     with X[OF `i\<in>I`] space[OF `i\<in>I`]
   741     with X[OF `i\<in>I`] space[OF `i\<in>I`]
   754     have "{X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
   742     have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
   755       "space M \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   743       "space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
   756       by (auto intro!: exI[of _ "space (M' i)"]) }
   744       by (auto intro!: exI[of _ "space (M' i)"]) }
   757   note indep_sets_finite[OF I this, simp]
   745   note indep_sets_finite_X = indep_sets_finite[OF I this]
   758 
   746 
   759   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
   747   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
   760     (\<forall>A\<in>\<Pi> i\<in>I. sets (M' i). prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
   748     (\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
   761     (is "?L = ?R")
   749     (is "?L = ?R")
   762   proof safe
   750   proof safe
   763     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. sets (M' i))"
   751     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
   764     from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
   752     from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
   765     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
   753     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
   766       by (auto simp add: Pi_iff)
   754       by (auto simp add: Pi_iff)
   767   next
   755   next
   768     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> sets (M' i)})"
   756     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
   769     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> sets (M' i)" by auto
   757     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
   770     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
   758     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
   771       "B \<in> (\<Pi> i\<in>I. sets (M' i))" by auto
   759       "B \<in> (\<Pi> i\<in>I. E i)" by auto
   772     from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
   760     from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
   773     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
   761     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
   774       by simp
   762       by simp
   775   qed
   763   qed
   776   then show ?thesis using `I \<noteq> {}`
   764   then show ?thesis using `I \<noteq> {}`
   777     by (simp add: rv indep_vars_def)
   765     by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
   778 qed
   766 qed
   779 
   767 
   780 lemma (in prob_space) indep_vars_compose:
   768 lemma (in prob_space) indep_vars_compose:
   781   assumes "indep_vars M' X I"
   769   assumes "indep_vars M' X I"
   782   assumes rv:
   770   assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
   783     "\<And>i. i \<in> I \<Longrightarrow> sigma_algebra (N i)"
       
   784     "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
       
   785   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
   771   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
   786   unfolding indep_vars_def
   772   unfolding indep_vars_def
   787 proof
   773 proof
   788   from rv `indep_vars M' X I`
   774   from rv `indep_vars M' X I`
   789   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
   775   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
   790     by (auto intro!: measurable_comp simp: indep_vars_def)
   776     by (auto simp: indep_vars_def)
   791 
   777 
   792   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   778   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   793     using `indep_vars M' X I` by (simp add: indep_vars_def)
   779     using `indep_vars M' X I` by (simp add: indep_vars_def)
   794   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
   780   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
   795   proof (rule indep_sets_mono_sets)
   781   proof (rule indep_sets_mono_sets)
   804       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   790       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   805       by (intro sigma_sets_subseteq) (auto simp: vimage_compose)
   791       by (intro sigma_sets_subseteq) (auto simp: vimage_compose)
   806   qed
   792   qed
   807 qed
   793 qed
   808 
   794 
   809 lemma (in prob_space) indep_varsD:
   795 lemma (in prob_space) indep_varsD_finite:
   810   assumes X: "indep_vars M' X I"
   796   assumes X: "indep_vars M' X I"
   811   assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
   797   assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
   812   shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
   798   shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
   813 proof (rule indep_setsD)
   799 proof (rule indep_setsD)
   814   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   800   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   815     using X by (auto simp: indep_vars_def)
   801     using X by (auto simp: indep_vars_def)
   816   show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
   802   show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
   817   show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   803   show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   818     using I by (auto intro: sigma_sets.Basic)
   804     using I by auto
   819 qed
   805 qed
   820 
   806 
   821 lemma (in prob_space) indep_distribution_eq_measure:
   807 lemma (in prob_space) indep_varsD:
   822   assumes I: "I \<noteq> {}" "finite I"
   808   assumes X: "indep_vars M' X I"
       
   809   assumes I: "J \<noteq> {}" "finite J" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M' i)"
       
   810   shows "prob (\<Inter>i\<in>J. X i -` A i \<inter> space M) = (\<Prod>i\<in>J. prob (X i -` A i \<inter> space M))"
       
   811 proof (rule indep_setsD)
       
   812   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
       
   813     using X by (auto simp: indep_vars_def)
       
   814   show "\<forall>i\<in>J. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
       
   815     using I by auto
       
   816 qed fact+
       
   817 
       
   818 lemma prod_algebra_cong:
       
   819   assumes "I = J" and sets: "(\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sets (N i))"
       
   820   shows "prod_algebra I M = prod_algebra J N"
       
   821 proof -
       
   822   have space: "\<And>i. i \<in> I \<Longrightarrow> space (M i) = space (N i)"
       
   823     using sets_eq_imp_space_eq[OF sets] by auto
       
   824   with sets show ?thesis unfolding `I = J`
       
   825     by (intro antisym prod_algebra_mono) auto
       
   826 qed
       
   827 
       
   828 lemma space_in_prod_algebra:
       
   829   "(\<Pi>\<^isub>E i\<in>I. space (M i)) \<in> prod_algebra I M"
       
   830 proof cases
       
   831   assume "I = {}" then show ?thesis
       
   832     by (auto simp add: prod_algebra_def image_iff prod_emb_def)
       
   833 next
       
   834   assume "I \<noteq> {}"
       
   835   then obtain i where "i \<in> I" by auto
       
   836   then have "(\<Pi>\<^isub>E i\<in>I. space (M i)) = prod_emb I M {i} (\<Pi>\<^isub>E i\<in>{i}. space (M i))"
       
   837     by (auto simp: prod_emb_def Pi_iff)
       
   838   also have "\<dots> \<in> prod_algebra I M"
       
   839     using `i \<in> I` by (intro prod_algebraI) auto
       
   840   finally show ?thesis .
       
   841 qed
       
   842 
       
   843 lemma (in prob_space) indep_vars_iff_distr_eq_PiM:
       
   844   fixes I :: "'i set" and X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b"
       
   845   assumes "I \<noteq> {}"
   823   assumes rv: "\<And>i. random_variable (M' i) (X i)"
   846   assumes rv: "\<And>i. random_variable (M' i) (X i)"
   824   shows "indep_vars M' X I \<longleftrightarrow>
   847   shows "indep_vars M' X I \<longleftrightarrow>
   825     (\<forall>A\<in>sets (\<Pi>\<^isub>M i\<in>I. (M' i \<lparr> measure := ereal\<circ>distribution (X i) \<rparr>)).
   848     distr M (\<Pi>\<^isub>M i\<in>I. M' i) (\<lambda>x. \<lambda>i\<in>I. X i x) = (\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i))"
   826       distribution (\<lambda>x. \<lambda>i\<in>I. X i x) A =
   849 proof -
   827       finite_measure.\<mu>' (\<Pi>\<^isub>M i\<in>I. (M' i \<lparr> measure := ereal\<circ>distribution (X i) \<rparr>)) A)"
   850   let ?P = "\<Pi>\<^isub>M i\<in>I. M' i"
   828     (is "_ \<longleftrightarrow> (\<forall>X\<in>_. distribution ?D X = finite_measure.\<mu>' (Pi\<^isub>M I ?M) X)")
   851   let ?X = "\<lambda>x. \<lambda>i\<in>I. X i x"
   829 proof -
   852   let ?D = "distr M ?P ?X"
   830   interpret M': prob_space "?M i" for i
   853   have X: "random_variable ?P ?X" by (intro measurable_restrict rv)
   831     using rv by (rule distribution_prob_space)
   854   interpret D: prob_space ?D by (intro prob_space_distr X)
   832   interpret P: finite_product_prob_space ?M I
   855 
   833     proof qed fact
   856   let ?D' = "\<lambda>i. distr M (M' i) (X i)"
   834 
   857   let ?P' = "\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i)"
   835   let ?D' = "(Pi\<^isub>M I ?M) \<lparr> measure := ereal \<circ> distribution ?D \<rparr>"
   858   interpret D': prob_space "?D' i" for i by (intro prob_space_distr rv)
   836   have "random_variable P.P ?D"
   859   interpret P: product_prob_space ?D' I ..
   837     using `finite I` rv by (intro random_variable_restrict) auto
   860     
   838   then interpret D: prob_space ?D'
       
   839     by (rule distribution_prob_space)
       
   840 
       
   841   show ?thesis
   861   show ?thesis
   842   proof (intro iffI ballI)
   862   proof
   843     assume "indep_vars M' X I"
   863     assume "indep_vars M' X I"
   844     fix A assume "A \<in> sets P.P"
   864     show "?D = ?P'"
   845     moreover
   865     proof (rule measure_eqI_generator_eq)
   846     have "D.prob A = P.prob A"
   866       show "Int_stable (prod_algebra I M')"
   847     proof (rule prob_space_unique_Int_stable)
   867         by (rule Int_stable_prod_algebra)
   848       show "prob_space ?D'" by unfold_locales
   868       show "prod_algebra I M' \<subseteq> Pow (space ?P)"
   849       show "prob_space (Pi\<^isub>M I ?M)" by unfold_locales
   869         using prod_algebra_sets_into_space by (simp add: space_PiM)
   850       show "Int_stable P.G" using M'.Int
   870       show "sets ?D = sigma_sets (space ?P) (prod_algebra I M')"
   851         by (intro Int_stable_product_algebra_generator) (simp add: Int_stable_def)
   871         by (simp add: sets_PiM space_PiM)
   852       show "space P.G \<in> sets P.G"
   872       show "sets ?P' = sigma_sets (space ?P) (prod_algebra I M')"
   853         using M'.top by (simp add: product_algebra_generator_def)
   873         by (simp add: sets_PiM space_PiM cong: prod_algebra_cong)
   854       show "space ?D' = space P.G"  "sets ?D' = sets (sigma P.G)"
   874       let ?A = "\<lambda>i. \<Pi>\<^isub>E i\<in>I. space (M' i)"
   855         by (simp_all add: product_algebra_def product_algebra_generator_def sets_sigma)
   875       show "range ?A \<subseteq> prod_algebra I M'" "incseq ?A" "(\<Union>i. ?A i) = space (Pi\<^isub>M I M')"
   856       show "space P.P = space P.G" "sets P.P = sets (sigma P.G)"
   876         by (auto simp: space_PiM intro!: space_in_prod_algebra cong: prod_algebra_cong)
   857         by (simp_all add: product_algebra_def)
   877       { fix i show "emeasure ?D (\<Pi>\<^isub>E i\<in>I. space (M' i)) \<noteq> \<infinity>" by auto }
   858       show "A \<in> sets (sigma P.G)"
   878     next
   859         using `A \<in> sets P.P` by (simp add: product_algebra_def)
   879       fix E assume E: "E \<in> prod_algebra I M'"
   860 
   880       from prod_algebraE[OF E] guess J Y . note J = this
   861       fix E assume E: "E \<in> sets P.G"
   881 
   862       then have "E \<in> sets P.P"
   882       from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
   863         by (simp add: sets_sigma sigma_sets.Basic product_algebra_def)
   883       then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
   864       then have "D.prob E = distribution ?D E"
   884         by (simp add: emeasure_distr X)
   865         unfolding D.\<mu>'_def by simp
   885       also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
   866       also
   886         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def Pi_iff split: split_if_asm)
   867       from E obtain F where "E = Pi\<^isub>E I F" and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> sets (M' i)"
   887       also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
   868         by (auto simp: product_algebra_generator_def)
   888         using `indep_vars M' X I` J `I \<noteq> {}` using indep_varsD[of M' X I J]
   869       with `I \<noteq> {}` have "distribution ?D E = prob (\<Inter>i\<in>I. X i -` F i \<inter> space M)"
   889         by (auto simp: emeasure_eq_measure setprod_ereal)
   870         using `I \<noteq> {}` by (auto intro!: arg_cong[where f=prob] simp: Pi_iff distribution_def)
   890       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
   871       also have "\<dots> = (\<Prod>i\<in>I. prob (X i -` F i \<inter> space M))"
   891         using rv J by (simp add: emeasure_distr)
   872         using `indep_vars M' X I` I F by (rule indep_varsD)
   892       also have "\<dots> = emeasure ?P' E"
   873       also have "\<dots> = P.prob E"
   893         using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
   874         using F by (simp add: `E = Pi\<^isub>E I F` P.prob_times M'.\<mu>'_def distribution_def)
   894       finally show "emeasure ?D E = emeasure ?P' E" .
   875       finally show "D.prob E = P.prob E" .
       
   876     qed
   895     qed
   877     ultimately show "distribution ?D A = P.prob A"
       
   878       by (simp add: D.\<mu>'_def)
       
   879   next
   896   next
   880     assume eq: "\<forall>A\<in>sets P.P. distribution ?D A = P.prob A"
   897     assume "?D = ?P'"
   881     have [simp]: "\<And>i. sigma (M' i) = M' i"
   898     show "indep_vars M' X I" unfolding indep_vars_def
   882       using rv by (intro sigma_algebra.sigma_eq) simp
   899     proof (intro conjI indep_setsI ballI rv)
   883     have "indep_vars (\<lambda>i. sigma (M' i)) X I"
   900       fix i show "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
   884     proof (subst indep_vars_finite[OF I])
   901         by (auto intro!: sigma_sets_subset measurable_sets rv)
   885       fix i assume [simp]: "i \<in> I"
       
   886       show "random_variable (sigma (M' i)) (X i)"
       
   887         using rv[of i] by simp
       
   888       show "Int_stable (M' i)" "space (M' i) \<in> sets (M' i)"
       
   889         using M'.Int[of _ i] M'.top by (auto simp: Int_stable_def)
       
   890     next
   902     next
   891       show "\<forall>A\<in>\<Pi> i\<in>I. sets (M' i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M))"
   903       fix J Y' assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
       
   904       assume Y': "\<forall>j\<in>J. Y' j \<in> sigma_sets (space M) {X j -` A \<inter> space M |A. A \<in> sets (M' j)}"
       
   905       have "\<forall>j\<in>J. \<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
   892       proof
   906       proof
   893         fix A assume A: "A \<in> (\<Pi> i\<in>I. sets (M' i))"
   907         fix j assume "j \<in> J"
   894         then have A_in_P: "(Pi\<^isub>E I A) \<in> sets P.P"
   908         from Y'[rule_format, OF this] rv[of j]
   895           by (auto intro!: product_algebraI)
   909         show "\<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
   896         have "prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = distribution ?D (Pi\<^isub>E I A)"
   910           by (subst (asm) sigma_sets_vimage_commute[symmetric, of _ _ "space (M' j)"])
   897           using `I \<noteq> {}`by (auto intro!: arg_cong[where f=prob] simp: Pi_iff distribution_def)
   911              (auto dest: measurable_space simp: sigma_sets_eq)
   898         also have "\<dots> = P.prob (Pi\<^isub>E I A)" using A_in_P eq by simp
       
   899         also have "\<dots> = (\<Prod>i\<in>I. M'.prob i (A i))"
       
   900           using A by (intro P.prob_times) auto
       
   901         also have "\<dots> = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
       
   902           using A by (auto intro!: setprod_cong simp: M'.\<mu>'_def Pi_iff distribution_def)
       
   903         finally show "prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M))" .
       
   904       qed
   912       qed
       
   913       from bchoice[OF this] obtain Y where
       
   914         Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
       
   915       let ?E = "prod_emb I M' J (Pi\<^isub>E J Y)"
       
   916       from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
       
   917         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def Pi_iff split: split_if_asm)
       
   918       then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
       
   919         by simp
       
   920       also have "\<dots> = emeasure ?D ?E"
       
   921         using Y  J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
       
   922       also have "\<dots> = emeasure ?P' ?E"
       
   923         using `?D = ?P'` by simp
       
   924       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
       
   925         using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
       
   926       also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
       
   927         using rv J Y by (simp add: emeasure_distr)
       
   928       finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
       
   929       then show "prob (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. prob (Y' i))"
       
   930         by (auto simp: emeasure_eq_measure setprod_ereal)
   905     qed
   931     qed
   906     then show "indep_vars M' X I"
       
   907       by simp
       
   908   qed
   932   qed
   909 qed
   933 qed
   910 
   934 
   911 lemma (in prob_space) indep_varD:
   935 lemma (in prob_space) indep_varD:
   912   assumes indep: "indep_var Ma A Mb B"
   936   assumes indep: "indep_var Ma A Mb B"
   934     using assms unfolding indep_var_def indep_vars_def by auto
   958     using assms unfolding indep_var_def indep_vars_def by auto
   935   then show "random_variable S X" "random_variable T Y"
   959   then show "random_variable S X" "random_variable T Y"
   936     unfolding UNIV_bool by auto
   960     unfolding UNIV_bool by auto
   937 qed
   961 qed
   938 
   962 
   939 lemma (in prob_space) indep_var_distributionD:
   963 lemma measurable_bool_case[simp, intro]:
   940   assumes indep: "indep_var S X T Y"
   964   "(\<lambda>(x, y). bool_case x y) \<in> measurable (M \<Otimes>\<^isub>M N) (Pi\<^isub>M UNIV (bool_case M N))"
   941   defines "P \<equiv> S\<lparr>measure := ereal\<circ>distribution X\<rparr> \<Otimes>\<^isub>M T\<lparr>measure := ereal\<circ>distribution Y\<rparr>"
   965     (is "?f \<in> measurable ?B ?P")
   942   assumes "A \<in> sets P"
   966 proof (rule measurable_PiM_single)
   943   shows "joint_distribution X Y A = finite_measure.\<mu>' P A"
   967   show "?f \<in> space ?B \<rightarrow> (\<Pi>\<^isub>E i\<in>UNIV. space (bool_case M N i))"
   944 proof -
   968     by (auto simp: space_pair_measure extensional_def split: bool.split)
   945   from indep have rvs: "random_variable S X" "random_variable T Y"
   969   fix i A assume "A \<in> sets (case i of True \<Rightarrow> M | False \<Rightarrow> N)"
       
   970   moreover then have "{\<omega> \<in> space (M \<Otimes>\<^isub>M N). prod_case bool_case \<omega> i \<in> A}
       
   971     = (case i of True \<Rightarrow> A \<times> space N | False \<Rightarrow> space M \<times> A)" 
       
   972     by (auto simp: space_pair_measure split: bool.split dest!: sets_into_space)
       
   973   ultimately show "{\<omega> \<in> space (M \<Otimes>\<^isub>M N). prod_case bool_case \<omega> i \<in> A} \<in> sets ?B"
       
   974     by (auto split: bool.split)
       
   975 qed
       
   976 
       
   977 lemma borel_measurable_indicator':
       
   978   "A \<in> sets N \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> (\<lambda>x. indicator A (f x)) \<in> borel_measurable M"
       
   979   using measurable_comp[OF _ borel_measurable_indicator, of f M N A] by (auto simp add: comp_def)
       
   980 
       
   981 lemma (in product_sigma_finite) distr_component:
       
   982   "distr (M i) (Pi\<^isub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x) = Pi\<^isub>M {i} M" (is "?D = ?P")
       
   983 proof (intro measure_eqI[symmetric])
       
   984   interpret I: finite_product_sigma_finite M "{i}" by default simp
       
   985 
       
   986   have eq: "\<And>x. x \<in> extensional {i} \<Longrightarrow> (\<lambda>j\<in>{i}. x i) = x"
       
   987     by (auto simp: extensional_def restrict_def)
       
   988 
       
   989   fix A assume A: "A \<in> sets ?P"
       
   990   then have "emeasure ?P A = (\<integral>\<^isup>+x. indicator A x \<partial>?P)" 
       
   991     by simp
       
   992   also have "\<dots> = (\<integral>\<^isup>+x. indicator ((\<lambda>x. \<lambda>i\<in>{i}. x) -` A \<inter> space (M i)) x \<partial>M i)" 
       
   993     apply (subst product_positive_integral_singleton[symmetric])
       
   994     apply (force intro!: measurable_restrict measurable_sets A)
       
   995     apply (auto intro!: positive_integral_cong simp: space_PiM indicator_def simp: eq)
       
   996     done
       
   997   also have "\<dots> = emeasure (M i) ((\<lambda>x. \<lambda>i\<in>{i}. x) -` A \<inter> space (M i))"
       
   998     by (force intro!: measurable_restrict measurable_sets A positive_integral_indicator)
       
   999   also have "\<dots> = emeasure ?D A"
       
  1000     using A by (auto intro!: emeasure_distr[symmetric] measurable_restrict) 
       
  1001   finally show "emeasure (Pi\<^isub>M {i} M) A = emeasure ?D A" .
       
  1002 qed simp
       
  1003 
       
  1004 lemma pair_measure_eqI:
       
  1005   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
       
  1006   assumes sets: "sets (M1 \<Otimes>\<^isub>M M2) = sets M"
       
  1007   assumes emeasure: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> emeasure M1 A * emeasure M2 B = emeasure M (A \<times> B)"
       
  1008   shows "M1 \<Otimes>\<^isub>M M2 = M"
       
  1009 proof -
       
  1010   interpret M1: sigma_finite_measure M1 by fact
       
  1011   interpret M2: sigma_finite_measure M2 by fact
       
  1012   interpret pair_sigma_finite M1 M2 by default
       
  1013   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
       
  1014   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
       
  1015   let ?P = "M1 \<Otimes>\<^isub>M M2"
       
  1016   show ?thesis
       
  1017   proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1 M2]])
       
  1018     show "?E \<subseteq> Pow (space ?P)"
       
  1019       using space_closed[of M1] space_closed[of M2] by (auto simp: space_pair_measure)
       
  1020     show "sets ?P = sigma_sets (space ?P) ?E"
       
  1021       by (simp add: sets_pair_measure space_pair_measure)
       
  1022     then show "sets M = sigma_sets (space ?P) ?E"
       
  1023       using sets[symmetric] by simp
       
  1024   next
       
  1025     show "range F \<subseteq> ?E" "incseq F" "(\<Union>i. F i) = space ?P" "\<And>i. emeasure ?P (F i) \<noteq> \<infinity>"
       
  1026       using F by (auto simp: space_pair_measure)
       
  1027   next
       
  1028     fix X assume "X \<in> ?E"
       
  1029     then obtain A B where X[simp]: "X = A \<times> B" and A: "A \<in> sets M1" and B: "B \<in> sets M2" by auto
       
  1030     then have "emeasure ?P X = emeasure M1 A * emeasure M2 B"
       
  1031        by (simp add: emeasure_pair_measure_Times)
       
  1032     also have "\<dots> = emeasure M (A \<times> B)"
       
  1033       using A B emeasure by auto
       
  1034     finally show "emeasure ?P X = emeasure M X"
       
  1035       by simp
       
  1036   qed
       
  1037 qed
       
  1038 
       
  1039 lemma pair_measure_eq_distr_PiM:
       
  1040   fixes M1 :: "'a measure" and M2 :: "'a measure"
       
  1041   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
       
  1042   shows "(M1 \<Otimes>\<^isub>M M2) = distr (Pi\<^isub>M UNIV (bool_case M1 M2)) (M1 \<Otimes>\<^isub>M M2) (\<lambda>x. (x True, x False))"
       
  1043     (is "?P = ?D")
       
  1044 proof (rule pair_measure_eqI[OF assms])
       
  1045   interpret B: product_sigma_finite "bool_case M1 M2"
       
  1046     unfolding product_sigma_finite_def using assms by (auto split: bool.split)
       
  1047   let ?B = "Pi\<^isub>M UNIV (bool_case M1 M2)"
       
  1048 
       
  1049   have [simp]: "fst \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x True)" "snd \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x False)"
       
  1050     by auto
       
  1051   fix A B assume A: "A \<in> sets M1" and B: "B \<in> sets M2"
       
  1052   have "emeasure M1 A * emeasure M2 B = (\<Prod> i\<in>UNIV. emeasure (bool_case M1 M2 i) (bool_case A B i))"
       
  1053     by (simp add: UNIV_bool ac_simps)
       
  1054   also have "\<dots> = emeasure ?B (Pi\<^isub>E UNIV (bool_case A B))"
       
  1055     using A B by (subst B.emeasure_PiM) (auto split: bool.split)
       
  1056   also have "Pi\<^isub>E UNIV (bool_case A B) = (\<lambda>x. (x True, x False)) -` (A \<times> B) \<inter> space ?B"
       
  1057     using A[THEN sets_into_space] B[THEN sets_into_space]
       
  1058     by (auto simp: Pi_iff all_bool_eq space_PiM split: bool.split)
       
  1059   finally show "emeasure M1 A * emeasure M2 B = emeasure ?D (A \<times> B)"
       
  1060     using A B
       
  1061       measurable_component_singleton[of True UNIV "bool_case M1 M2"]
       
  1062       measurable_component_singleton[of False UNIV "bool_case M1 M2"]
       
  1063     by (subst emeasure_distr) (auto simp: measurable_pair_iff)
       
  1064 qed simp
       
  1065 
       
  1066 lemma measurable_Pair:
       
  1067   assumes rvs: "X \<in> measurable M S" "Y \<in> measurable M T"
       
  1068   shows "(\<lambda>x. (X x, Y x)) \<in> measurable M (S \<Otimes>\<^isub>M T)"
       
  1069 proof -
       
  1070   have [simp]: "fst \<circ> (\<lambda>x. (X x, Y x)) = (\<lambda>x. X x)" "snd \<circ> (\<lambda>x. (X x, Y x)) = (\<lambda>x. Y x)"
       
  1071     by auto
       
  1072   show " (\<lambda>x. (X x, Y x)) \<in> measurable M (S \<Otimes>\<^isub>M T)"
       
  1073     by (auto simp: measurable_pair_iff rvs)
       
  1074 qed
       
  1075 
       
  1076 lemma (in prob_space) indep_var_distribution_eq:
       
  1077   "indep_var S X T Y \<longleftrightarrow> random_variable S X \<and> random_variable T Y \<and>
       
  1078     distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" (is "_ \<longleftrightarrow> _ \<and> _ \<and> ?S \<Otimes>\<^isub>M ?T = ?J")
       
  1079 proof safe
       
  1080   assume "indep_var S X T Y"
       
  1081   then show rvs: "random_variable S X" "random_variable T Y"
   946     by (blast dest: indep_var_rv1 indep_var_rv2)+
  1082     by (blast dest: indep_var_rv1 indep_var_rv2)+
   947 
  1083   then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
   948   let ?S = "S\<lparr>measure := ereal\<circ>distribution X\<rparr>"
  1084     by (rule measurable_Pair)
   949   let ?T = "T\<lparr>measure := ereal\<circ>distribution Y\<rparr>"
  1085 
   950   interpret X: prob_space ?S by (rule distribution_prob_space) fact
  1086   interpret X: prob_space ?S by (rule prob_space_distr) fact
   951   interpret Y: prob_space ?T by (rule distribution_prob_space) fact
  1087   interpret Y: prob_space ?T by (rule prob_space_distr) fact
   952   interpret XY: pair_prob_space ?S ?T by default
  1088   interpret XY: pair_prob_space ?S ?T ..
   953 
  1089   show "?S \<Otimes>\<^isub>M ?T = ?J"
   954   let ?J = "XY.P\<lparr> measure := ereal \<circ> joint_distribution X Y \<rparr>"
  1090   proof (rule pair_measure_eqI)
   955   interpret J: prob_space ?J
  1091     show "sigma_finite_measure ?S" ..
   956     by (rule joint_distribution_prob_space) (simp_all add: rvs)
  1092     show "sigma_finite_measure ?T" ..
   957 
  1093 
   958   have "finite_measure.\<mu>' (XY.P\<lparr> measure := ereal \<circ> joint_distribution X Y \<rparr>) A = XY.\<mu>' A"
  1094     fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
   959   proof (rule prob_space_unique_Int_stable)
  1095     have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
   960     show "Int_stable (pair_measure_generator ?S ?T)" (is "Int_stable ?P")
  1096       using A B by (intro emeasure_distr[OF XY]) auto
   961       by fact
  1097     also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
   962     show "space ?P \<in> sets ?P"
  1098       using indep_varD[OF `indep_var S X T Y`, of A B] A B by (simp add: emeasure_eq_measure)
   963       unfolding space_pair_measure[simplified pair_measure_def space_sigma]
  1099     also have "\<dots> = emeasure ?S A * emeasure ?T B"
   964       using X.top Y.top by (auto intro!: pair_measure_generatorI)
  1100       using rvs A B by (simp add: emeasure_distr)
   965 
  1101     finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
   966     show "prob_space ?J" by unfold_locales
  1102   qed simp
   967     show "space ?J = space ?P"
  1103 next
   968       by (simp add: pair_measure_generator_def space_pair_measure)
  1104   assume rvs: "random_variable S X" "random_variable T Y"
   969     show "sets ?J = sets (sigma ?P)"
  1105   then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
   970       by (simp add: pair_measure_def)
  1106     by (rule measurable_Pair)
   971 
  1107 
   972     show "prob_space XY.P" by unfold_locales
  1108   let ?S = "distr M S X" and ?T = "distr M T Y"
   973     show "space XY.P = space ?P" "sets XY.P = sets (sigma ?P)"
  1109   interpret X: prob_space ?S by (rule prob_space_distr) fact
   974       by (simp_all add: pair_measure_generator_def pair_measure_def)
  1110   interpret Y: prob_space ?T by (rule prob_space_distr) fact
   975 
  1111   interpret XY: pair_prob_space ?S ?T ..
   976     show "A \<in> sets (sigma ?P)"
  1112 
   977       using `A \<in> sets P` unfolding P_def pair_measure_def by simp
  1113   assume "?S \<Otimes>\<^isub>M ?T = ?J"
   978 
  1114 
   979     fix X assume "X \<in> sets ?P"
  1115   { fix S and X
   980     then obtain A B where "A \<in> sets S" "B \<in> sets T" "X = A \<times> B"
  1116     have "Int_stable {X -` A \<inter> space M |A. A \<in> sets S}"
   981       by (auto simp: sets_pair_measure_generator)
  1117     proof (safe intro!: Int_stableI)
   982     then show "J.\<mu>' X = XY.\<mu>' X"
  1118       fix A B assume "A \<in> sets S" "B \<in> sets S"
   983       unfolding J.\<mu>'_def XY.\<mu>'_def using indep
  1119       then show "\<exists>C. (X -` A \<inter> space M) \<inter> (X -` B \<inter> space M) = (X -` C \<inter> space M) \<and> C \<in> sets S"
   984       by (simp add: XY.pair_measure_times)
  1120         by (intro exI[of _ "A \<inter> B"]) auto
   985          (simp add: distribution_def indep_varD)
  1121     qed }
   986   qed
  1122   note Int_stable = this
   987   then show ?thesis
  1123 
   988     using `A \<in> sets P` unfolding P_def J.\<mu>'_def XY.\<mu>'_def by simp
  1124   show "indep_var S X T Y" unfolding indep_var_eq
       
  1125   proof (intro conjI indep_set_sigma_sets Int_stable rvs)
       
  1126     show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
       
  1127     proof (safe intro!: indep_setI)
       
  1128       { fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
       
  1129         using `X \<in> measurable M S` by (auto intro: measurable_sets) }
       
  1130       { fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
       
  1131         using `Y \<in> measurable M T` by (auto intro: measurable_sets) }
       
  1132     next
       
  1133       fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
       
  1134       then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
       
  1135         using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
       
  1136       also have "\<dots> = emeasure (?S \<Otimes>\<^isub>M ?T) (A \<times> B)"
       
  1137         unfolding `?S \<Otimes>\<^isub>M ?T = ?J` ..
       
  1138       also have "\<dots> = emeasure ?S A * emeasure ?T B"
       
  1139         using ab by (simp add: XY.emeasure_pair_measure_Times)
       
  1140       finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
       
  1141         prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
       
  1142         using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
       
  1143     qed
       
  1144   qed
   989 qed
  1145 qed
   990 
  1146 
   991 end
  1147 end