src/HOL/Library/Discrete.thy
changeset 51174 071674018df9
child 51263 31e786e0e6a7
equal deleted inserted replaced
51173:3cbb4e95a565 51174:071674018df9
       
     1 (* Author: Florian Haftmann, TU Muenchen *)  
       
     2 
       
     3 header {* Common discrete functions *}
       
     4 
       
     5 theory Discrete
       
     6 imports Main
       
     7 begin
       
     8 
       
     9 lemma power2_nat_le_eq_le:
       
    10   fixes m n :: nat
       
    11   shows "m ^ 2 \<le> n ^ 2 \<longleftrightarrow> m \<le> n"
       
    12   by (auto intro: power2_le_imp_le power_mono)
       
    13 
       
    14 subsection {* Discrete logarithm *}
       
    15 
       
    16 fun log :: "nat \<Rightarrow> nat" where
       
    17   [simp del]: "log n = (if n < 2 then 0 else Suc (log (n div 2)))"
       
    18 
       
    19 lemma log_zero [simp]:
       
    20   "log 0 = 0"
       
    21   by (simp add: log.simps)
       
    22 
       
    23 lemma log_one [simp]:
       
    24   "log 1 = 0"
       
    25   by (simp add: log.simps)
       
    26 
       
    27 lemma log_Suc_zero [simp]:
       
    28   "log (Suc 0) = 0"
       
    29   using log_one by simp
       
    30 
       
    31 lemma log_rec:
       
    32   "n \<ge> 2 \<Longrightarrow> log n = Suc (log (n div 2))"
       
    33   by (simp add: log.simps)
       
    34 
       
    35 lemma log_twice [simp]:
       
    36   "n \<noteq> 0 \<Longrightarrow> log (2 * n) = Suc (log n)"
       
    37   by (simp add: log_rec)
       
    38 
       
    39 lemma log_half [simp]:
       
    40   "log (n div 2) = log n - 1"
       
    41 proof (cases "n < 2")
       
    42   case True
       
    43   then have "n = 0 \<or> n = 1" by arith
       
    44   then show ?thesis by (auto simp del: One_nat_def)
       
    45 next
       
    46   case False then show ?thesis by (simp add: log_rec)
       
    47 qed
       
    48 
       
    49 lemma log_exp [simp]:
       
    50   "log (2 ^ n) = n"
       
    51   by (induct n) simp_all
       
    52 
       
    53 lemma log_mono:
       
    54   "mono log"
       
    55 proof
       
    56   fix m n :: nat
       
    57   assume "m \<le> n"
       
    58   then show "log m \<le> log n"
       
    59   proof (induct m arbitrary: n rule: log.induct)
       
    60     case (1 m)
       
    61     then have mn2: "m div 2 \<le> n div 2" by arith
       
    62     show "log m \<le> log n"
       
    63     proof (cases "m < 2")
       
    64       case True
       
    65       then have "m = 0 \<or> m = 1" by arith
       
    66       then show ?thesis by (auto simp del: One_nat_def)
       
    67     next
       
    68       case False
       
    69       with mn2 have "m \<ge> 2" and "n \<ge> 2" by auto arith
       
    70       from False have m2_0: "m div 2 \<noteq> 0" by arith
       
    71       with mn2 have n2_0: "n div 2 \<noteq> 0" by arith
       
    72       from False "1.hyps" mn2 have "log (m div 2) \<le> log (n div 2)" by blast
       
    73       with m2_0 n2_0 have "log (2 * (m div 2)) \<le> log (2 * (n div 2))" by simp
       
    74       with m2_0 n2_0 `m \<ge> 2` `n \<ge> 2` show ?thesis by (simp only: log_rec [of m] log_rec [of n]) simp
       
    75     qed
       
    76   qed
       
    77 qed
       
    78 
       
    79 
       
    80 subsection {* Discrete square root *}
       
    81 
       
    82 definition sqrt :: "nat \<Rightarrow> nat"
       
    83 where
       
    84   "sqrt n = Max {m. m ^ 2 \<le> n}"
       
    85 
       
    86 lemma sqrt_inverse_power2 [simp]:
       
    87   "sqrt (n ^ 2) = n"
       
    88 proof -
       
    89   have "{m. m \<le> n} \<noteq> {}" by auto
       
    90   then have "Max {m. m \<le> n} \<le> n" by auto
       
    91   then show ?thesis
       
    92     by (auto simp add: sqrt_def power2_nat_le_eq_le intro: antisym)
       
    93 qed
       
    94 
       
    95 lemma [code]:
       
    96   "sqrt n = Max (Set.filter (\<lambda>m. m ^ 2 \<le> n) {0..n})"
       
    97 proof -
       
    98   { fix m
       
    99     assume "m\<twosuperior> \<le> n"
       
   100     then have "m \<le> n"
       
   101       by (cases m) (simp_all add: power2_eq_square)
       
   102   }
       
   103   then have "{m. m \<le> n \<and> m\<twosuperior> \<le> n} = {m. m\<twosuperior> \<le> n}" by auto
       
   104   then show ?thesis by (simp add: sqrt_def Set.filter_def)
       
   105 qed
       
   106 
       
   107 lemma sqrt_le:
       
   108   "sqrt n \<le> n"
       
   109 proof -
       
   110   have "0\<twosuperior> \<le> n" by simp
       
   111   then have *: "{m. m\<twosuperior> \<le> n} \<noteq> {}" by blast
       
   112   { fix m
       
   113     assume "m\<twosuperior> \<le> n"
       
   114     then have "m \<le> n"
       
   115       by (cases m) (simp_all add: power2_eq_square)
       
   116   } note ** = this
       
   117   then have "{m. m\<twosuperior> \<le> n} \<subseteq> {m. m \<le> n}" by auto
       
   118   then have "finite {m. m\<twosuperior> \<le> n}" by (rule finite_subset) rule
       
   119   with * show ?thesis by (auto simp add: sqrt_def intro: **)
       
   120 qed
       
   121 
       
   122 hide_const (open) log sqrt
       
   123 
       
   124 end
       
   125