src/HOL/Analysis/Cauchy_Integral_Theorem.thy
changeset 68239 0764ee22a4d1
parent 68046 6aba668aea78
child 68247 7344affc0bd4
child 68255 009f783d1bac
equal deleted inserted replaced
68223:88dd06301dd3 68239:0764ee22a4d1
  1152       using g by auto
  1152       using g by auto
  1153     have "vector_derivative g (at x within {0..1}) =
  1153     have "vector_derivative g (at x within {0..1}) =
  1154           vector_derivative (shiftpath (1 - a) (shiftpath a g)) (at x within {0..1})"
  1154           vector_derivative (shiftpath (1 - a) (shiftpath a g)) (at x within {0..1})"
  1155       apply (rule vector_derivative_at_within_ivl
  1155       apply (rule vector_derivative_at_within_ivl
  1156                   [OF has_vector_derivative_transform_within_open
  1156                   [OF has_vector_derivative_transform_within_open
  1157                       [where f = "(shiftpath (1 - a) (shiftpath a g))" and s = "{0<..<1}-s"]])
  1157                       [where f = "(shiftpath (1 - a) (shiftpath a g))" and S = "{0<..<1}-s"]])
  1158       using s g assms x
  1158       using s g assms x
  1159       apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath
  1159       apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath
  1160                         vector_derivative_within_interior vector_derivative_works [symmetric])
  1160                         vector_derivative_within_interior vector_derivative_works [symmetric])
  1161       apply (rule differentiable_transform_within [OF gx, of "min x (1-x)"])
  1161       apply (rule differentiable_transform_within [OF gx, of "min x (1-x)"])
  1162       apply (auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
  1162       apply (auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
  4451   have c: "continuous (at x within s) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> s" for x
  4451   have c: "continuous (at x within s) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> s" for x
  4452   proof (cases "x = z")
  4452   proof (cases "x = z")
  4453     case True then show ?thesis
  4453     case True then show ?thesis
  4454       apply (simp add: continuous_within)
  4454       apply (simp add: continuous_within)
  4455       apply (rule Lim_transform_away_within [of _ "z+1" _ "\<lambda>w::complex. (f w - f z)/(w - z)"])
  4455       apply (rule Lim_transform_away_within [of _ "z+1" _ "\<lambda>w::complex. (f w - f z)/(w - z)"])
  4456       using has_field_derivative_at_within DERIV_within_iff f'
  4456       using has_field_derivative_at_within has_field_derivative_iff f'
  4457       apply (fastforce simp add:)+
  4457       apply (fastforce simp add:)+
  4458       done
  4458       done
  4459   next
  4459   next
  4460     case False
  4460     case False
  4461     then have dxz: "dist x z > 0" by auto
  4461     then have dxz: "dist x z > 0" by auto
  5552     apply (rule has_contour_integral_diff; rule has_contour_integral_div; simp add: field_simps; rule int)
  5552     apply (rule has_contour_integral_diff; rule has_contour_integral_div; simp add: field_simps; rule int)
  5553     apply (metis contra_subsetD d dist_commute mem_ball that)
  5553     apply (metis contra_subsetD d dist_commute mem_ball that)
  5554     apply (rule w)
  5554     apply (rule w)
  5555     done
  5555     done
  5556   show ?thes2
  5556   show ?thes2
  5557     apply (simp add: DERIV_within_iff del: power_Suc)
  5557     apply (simp add: has_field_derivative_iff del: power_Suc)
  5558     apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ])
  5558     apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ])
  5559     apply (simp add: \<open>k \<noteq> 0\<close> **)
  5559     apply (simp add: \<open>k \<noteq> 0\<close> **)
  5560     done
  5560     done
  5561 qed
  5561 qed
  5562 
  5562