src/HOL/Algebra/RingHom.thy
changeset 63167 0909deb8059b
parent 61565 352c73a689da
child 67443 3abf6a722518
equal deleted inserted replaced
63166:143f58bb34f9 63167:0909deb8059b
     6 imports Ideal
     6 imports Ideal
     7 begin
     7 begin
     8 
     8 
     9 section \<open>Homomorphisms of Non-Commutative Rings\<close>
     9 section \<open>Homomorphisms of Non-Commutative Rings\<close>
    10 
    10 
    11 text \<open>Lifting existing lemmas in a @{text ring_hom_ring} locale\<close>
    11 text \<open>Lifting existing lemmas in a \<open>ring_hom_ring\<close> locale\<close>
    12 locale ring_hom_ring = R?: ring R + S?: ring S
    12 locale ring_hom_ring = R?: ring R + S?: ring S
    13     for R (structure) and S (structure) +
    13     for R (structure) and S (structure) +
    14   fixes h
    14   fixes h
    15   assumes homh: "h \<in> ring_hom R S"
    15   assumes homh: "h \<in> ring_hom R S"
    16   notes hom_mult [simp] = ring_hom_mult [OF homh]
    16   notes hom_mult [simp] = ring_hom_mult [OF homh]
   100 qed
   100 qed
   101 
   101 
   102 
   102 
   103 subsection \<open>The Kernel of a Ring Homomorphism\<close>
   103 subsection \<open>The Kernel of a Ring Homomorphism\<close>
   104 
   104 
   105 --"the kernel of a ring homomorphism is an ideal"
   105 \<comment>"the kernel of a ring homomorphism is an ideal"
   106 lemma (in ring_hom_ring) kernel_is_ideal:
   106 lemma (in ring_hom_ring) kernel_is_ideal:
   107   shows "ideal (a_kernel R S h) R"
   107   shows "ideal (a_kernel R S h) R"
   108 apply (rule idealI)
   108 apply (rule idealI)
   109    apply (rule R.is_ring)
   109    apply (rule R.is_ring)
   110   apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
   110   apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])