17 by (metis Un_commute Un_left_absorb) |
17 by (metis Un_commute Un_left_absorb) |
18 |
18 |
19 type_synonym key = nat |
19 type_synonym key = nat |
20 |
20 |
21 consts |
21 consts |
22 all_symmetric :: bool --{*true if all keys are symmetric*} |
22 all_symmetric :: bool \<comment>\<open>true if all keys are symmetric\<close> |
23 invKey :: "key=>key" --{*inverse of a symmetric key*} |
23 invKey :: "key=>key" \<comment>\<open>inverse of a symmetric key\<close> |
24 |
24 |
25 specification (invKey) |
25 specification (invKey) |
26 invKey [simp]: "invKey (invKey K) = K" |
26 invKey [simp]: "invKey (invKey K) = K" |
27 invKey_symmetric: "all_symmetric --> invKey = id" |
27 invKey_symmetric: "all_symmetric --> invKey = id" |
28 by (metis id_apply) |
28 by (metis id_apply) |
29 |
29 |
30 |
30 |
31 text{*The inverse of a symmetric key is itself; that of a public key |
31 text\<open>The inverse of a symmetric key is itself; that of a public key |
32 is the private key and vice versa*} |
32 is the private key and vice versa\<close> |
33 |
33 |
34 definition symKeys :: "key set" where |
34 definition symKeys :: "key set" where |
35 "symKeys == {K. invKey K = K}" |
35 "symKeys == {K. invKey K = K}" |
36 |
36 |
37 datatype --{*We allow any number of friendly agents*} |
37 datatype \<comment>\<open>We allow any number of friendly agents\<close> |
38 agent = Server | Friend nat | Spy |
38 agent = Server | Friend nat | Spy |
39 |
39 |
40 datatype |
40 datatype |
41 msg = Agent agent --{*Agent names*} |
41 msg = Agent agent \<comment>\<open>Agent names\<close> |
42 | Number nat --{*Ordinary integers, timestamps, ...*} |
42 | Number nat \<comment>\<open>Ordinary integers, timestamps, ...\<close> |
43 | Nonce nat --{*Unguessable nonces*} |
43 | Nonce nat \<comment>\<open>Unguessable nonces\<close> |
44 | Key key --{*Crypto keys*} |
44 | Key key \<comment>\<open>Crypto keys\<close> |
45 | Hash msg --{*Hashing*} |
45 | Hash msg \<comment>\<open>Hashing\<close> |
46 | MPair msg msg --{*Compound messages*} |
46 | MPair msg msg \<comment>\<open>Compound messages\<close> |
47 | Crypt key msg --{*Encryption, public- or shared-key*} |
47 | Crypt key msg \<comment>\<open>Encryption, public- or shared-key\<close> |
48 |
48 |
49 |
49 |
50 text{*Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...*} |
50 text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close> |
51 syntax |
51 syntax |
52 "_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
52 "_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
53 translations |
53 translations |
54 "\<lbrace>x, y, z\<rbrace>" == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" |
54 "\<lbrace>x, y, z\<rbrace>" == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" |
55 "\<lbrace>x, y\<rbrace>" == "CONST MPair x y" |
55 "\<lbrace>x, y\<rbrace>" == "CONST MPair x y" |
56 |
56 |
57 |
57 |
58 definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where |
58 definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where |
59 --{*Message Y paired with a MAC computed with the help of X*} |
59 \<comment>\<open>Message Y paired with a MAC computed with the help of X\<close> |
60 "Hash[X] Y == \<lbrace> Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" |
60 "Hash[X] Y == \<lbrace> Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" |
61 |
61 |
62 definition keysFor :: "msg set => key set" where |
62 definition keysFor :: "msg set => key set" where |
63 --{*Keys useful to decrypt elements of a message set*} |
63 \<comment>\<open>Keys useful to decrypt elements of a message set\<close> |
64 "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
64 "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
65 |
65 |
66 |
66 |
67 subsubsection{*Inductive Definition of All Parts" of a Message*} |
67 subsubsection\<open>Inductive Definition of All Parts" of a Message\<close> |
68 |
68 |
69 inductive_set |
69 inductive_set |
70 parts :: "msg set => msg set" |
70 parts :: "msg set => msg set" |
71 for H :: "msg set" |
71 for H :: "msg set" |
72 where |
72 where |
81 apply (metis parts.Inj set_rev_mp) |
81 apply (metis parts.Inj set_rev_mp) |
82 apply (metis parts.Fst) |
82 apply (metis parts.Fst) |
83 apply (metis parts.Snd) |
83 apply (metis parts.Snd) |
84 by (metis parts.Body) |
84 by (metis parts.Body) |
85 |
85 |
86 text{*Equations hold because constructors are injective.*} |
86 text\<open>Equations hold because constructors are injective.\<close> |
87 lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" |
87 lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" |
88 by (metis agent.inject image_iff) |
88 by (metis agent.inject image_iff) |
89 |
89 |
90 lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in> A)" |
90 lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in> A)" |
91 by (metis image_iff msg.inject(4)) |
91 by (metis image_iff msg.inject(4)) |
92 |
92 |
93 lemma Nonce_Key_image_eq [simp]: "Nonce x \<notin> Key`A" |
93 lemma Nonce_Key_image_eq [simp]: "Nonce x \<notin> Key`A" |
94 by (metis image_iff msg.distinct(23)) |
94 by (metis image_iff msg.distinct(23)) |
95 |
95 |
96 |
96 |
97 subsubsection{*Inverse of keys *} |
97 subsubsection\<open>Inverse of keys\<close> |
98 |
98 |
99 lemma invKey_eq [simp]: "(invKey K = invKey K') = (K = K')" |
99 lemma invKey_eq [simp]: "(invKey K = invKey K') = (K = K')" |
100 by (metis invKey) |
100 by (metis invKey) |
101 |
101 |
102 |
102 |
103 subsection{*keysFor operator*} |
103 subsection\<open>keysFor operator\<close> |
104 |
104 |
105 lemma keysFor_empty [simp]: "keysFor {} = {}" |
105 lemma keysFor_empty [simp]: "keysFor {} = {}" |
106 by (unfold keysFor_def, blast) |
106 by (unfold keysFor_def, blast) |
107 |
107 |
108 lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
108 lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
109 by (unfold keysFor_def, blast) |
109 by (unfold keysFor_def, blast) |
110 |
110 |
111 lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" |
111 lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" |
112 by (unfold keysFor_def, blast) |
112 by (unfold keysFor_def, blast) |
113 |
113 |
114 text{*Monotonicity*} |
114 text\<open>Monotonicity\<close> |
115 lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" |
115 lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" |
116 by (unfold keysFor_def, blast) |
116 by (unfold keysFor_def, blast) |
117 |
117 |
118 lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
118 lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
119 by (unfold keysFor_def, auto) |
119 by (unfold keysFor_def, auto) |
142 |
142 |
143 lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" |
143 lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" |
144 by (unfold keysFor_def, blast) |
144 by (unfold keysFor_def, blast) |
145 |
145 |
146 |
146 |
147 subsection{*Inductive relation "parts"*} |
147 subsection\<open>Inductive relation "parts"\<close> |
148 |
148 |
149 lemma MPair_parts: |
149 lemma MPair_parts: |
150 "[| \<lbrace>X,Y\<rbrace> \<in> parts H; |
150 "[| \<lbrace>X,Y\<rbrace> \<in> parts H; |
151 [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" |
151 [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" |
152 by (blast dest: parts.Fst parts.Snd) |
152 by (blast dest: parts.Fst parts.Snd) |
153 |
153 |
154 declare MPair_parts [elim!] parts.Body [dest!] |
154 declare MPair_parts [elim!] parts.Body [dest!] |
155 text{*NB These two rules are UNSAFE in the formal sense, as they discard the |
155 text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the |
156 compound message. They work well on THIS FILE. |
156 compound message. They work well on THIS FILE. |
157 @{text MPair_parts} is left as SAFE because it speeds up proofs. |
157 \<open>MPair_parts\<close> is left as SAFE because it speeds up proofs. |
158 The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} |
158 The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close> |
159 |
159 |
160 lemma parts_increasing: "H \<subseteq> parts(H)" |
160 lemma parts_increasing: "H \<subseteq> parts(H)" |
161 by blast |
161 by blast |
162 |
162 |
163 lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
163 lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
169 done |
169 done |
170 |
170 |
171 lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" |
171 lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" |
172 by simp |
172 by simp |
173 |
173 |
174 text{*WARNING: loops if H = {Y}, therefore must not be repeated!*} |
174 text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close> |
175 lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" |
175 lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" |
176 apply (erule parts.induct) |
176 apply (erule parts.induct) |
177 apply fast+ |
177 apply fast+ |
178 done |
178 done |
179 |
179 |
180 |
180 |
181 subsubsection{*Unions *} |
181 subsubsection\<open>Unions\<close> |
182 |
182 |
183 lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" |
183 lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" |
184 by (intro Un_least parts_mono Un_upper1 Un_upper2) |
184 by (intro Un_least parts_mono Un_upper1 Un_upper2) |
185 |
185 |
186 lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" |
186 lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" |
210 done |
210 done |
211 |
211 |
212 lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" |
212 lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" |
213 by (intro equalityI parts_UN_subset1 parts_UN_subset2) |
213 by (intro equalityI parts_UN_subset1 parts_UN_subset2) |
214 |
214 |
215 text{*Added to simplify arguments to parts, analz and synth. |
215 text\<open>Added to simplify arguments to parts, analz and synth. |
216 NOTE: the UN versions are no longer used!*} |
216 NOTE: the UN versions are no longer used!\<close> |
217 |
217 |
218 |
218 |
219 text{*This allows @{text blast} to simplify occurrences of |
219 text\<open>This allows \<open>blast\<close> to simplify occurrences of |
220 @{term "parts(G\<union>H)"} in the assumption.*} |
220 @{term "parts(G\<union>H)"} in the assumption.\<close> |
221 lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
221 lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
222 declare in_parts_UnE [elim!] |
222 declare in_parts_UnE [elim!] |
223 |
223 |
224 lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
224 lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
225 by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
225 by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
226 |
226 |
227 subsubsection{*Idempotence and transitivity *} |
227 subsubsection\<open>Idempotence and transitivity\<close> |
228 |
228 |
229 lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" |
229 lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" |
230 by (erule parts.induct, blast+) |
230 by (erule parts.induct, blast+) |
231 |
231 |
232 lemma parts_idem [simp]: "parts (parts H) = parts H" |
232 lemma parts_idem [simp]: "parts (parts H) = parts H" |
308 apply (simp_all add: parts_insert2) |
308 apply (simp_all add: parts_insert2) |
309 apply (metis Suc_n_not_le_n) |
309 apply (metis Suc_n_not_le_n) |
310 apply (metis le_trans linorder_linear) |
310 apply (metis le_trans linorder_linear) |
311 done |
311 done |
312 |
312 |
313 subsection{*Inductive relation "analz"*} |
313 subsection\<open>Inductive relation "analz"\<close> |
314 |
314 |
315 text{*Inductive definition of "analz" -- what can be broken down from a set of |
315 text\<open>Inductive definition of "analz" -- what can be broken down from a set of |
316 messages, including keys. A form of downward closure. Pairs can |
316 messages, including keys. A form of downward closure. Pairs can |
317 be taken apart; messages decrypted with known keys. *} |
317 be taken apart; messages decrypted with known keys.\<close> |
318 |
318 |
319 inductive_set |
319 inductive_set |
320 analz :: "msg set => msg set" |
320 analz :: "msg set => msg set" |
321 for H :: "msg set" |
321 for H :: "msg set" |
322 where |
322 where |
325 | Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H" |
325 | Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H" |
326 | Decrypt [dest]: |
326 | Decrypt [dest]: |
327 "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" |
327 "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" |
328 |
328 |
329 |
329 |
330 text{*Monotonicity; Lemma 1 of Lowe's paper*} |
330 text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close> |
331 lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" |
331 lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" |
332 apply auto |
332 apply auto |
333 apply (erule analz.induct) |
333 apply (erule analz.induct) |
334 apply (auto dest: analz.Fst analz.Snd) |
334 apply (auto dest: analz.Fst analz.Snd) |
335 done |
335 done |
336 |
336 |
337 text{*Making it safe speeds up proofs*} |
337 text\<open>Making it safe speeds up proofs\<close> |
338 lemma MPair_analz [elim!]: |
338 lemma MPair_analz [elim!]: |
339 "[| \<lbrace>X,Y\<rbrace> \<in> analz H; |
339 "[| \<lbrace>X,Y\<rbrace> \<in> analz H; |
340 [| X \<in> analz H; Y \<in> analz H |] ==> P |
340 [| X \<in> analz H; Y \<in> analz H |] ==> P |
341 |] ==> P" |
341 |] ==> P" |
342 by (blast dest: analz.Fst analz.Snd) |
342 by (blast dest: analz.Fst analz.Snd) |
365 apply (erule analz.induct, auto) |
365 apply (erule analz.induct, auto) |
366 done |
366 done |
367 |
367 |
368 lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
368 lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
369 |
369 |
370 subsubsection{*General equational properties *} |
370 subsubsection\<open>General equational properties\<close> |
371 |
371 |
372 lemma analz_empty [simp]: "analz{} = {}" |
372 lemma analz_empty [simp]: "analz{} = {}" |
373 apply safe |
373 apply safe |
374 apply (erule analz.induct, blast+) |
374 apply (erule analz.induct, blast+) |
375 done |
375 done |
376 |
376 |
377 text{*Converse fails: we can analz more from the union than from the |
377 text\<open>Converse fails: we can analz more from the union than from the |
378 separate parts, as a key in one might decrypt a message in the other*} |
378 separate parts, as a key in one might decrypt a message in the other\<close> |
379 lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
379 lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
380 by (intro Un_least analz_mono Un_upper1 Un_upper2) |
380 by (intro Un_least analz_mono Un_upper1 Un_upper2) |
381 |
381 |
382 lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
382 lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
383 by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
383 by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
384 |
384 |
385 subsubsection{*Rewrite rules for pulling out atomic messages *} |
385 subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
386 |
386 |
387 lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
387 lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
388 |
388 |
389 lemma analz_insert_Agent [simp]: |
389 lemma analz_insert_Agent [simp]: |
390 "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
390 "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
408 "analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
408 "analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
409 apply (rule analz_insert_eq_I) |
409 apply (rule analz_insert_eq_I) |
410 apply (erule analz.induct, auto) |
410 apply (erule analz.induct, auto) |
411 done |
411 done |
412 |
412 |
413 text{*Can only pull out Keys if they are not needed to decrypt the rest*} |
413 text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close> |
414 lemma analz_insert_Key [simp]: |
414 lemma analz_insert_Key [simp]: |
415 "K \<notin> keysFor (analz H) ==> |
415 "K \<notin> keysFor (analz H) ==> |
416 analz (insert (Key K) H) = insert (Key K) (analz H)" |
416 analz (insert (Key K) H) = insert (Key K) (analz H)" |
417 apply (unfold keysFor_def) |
417 apply (unfold keysFor_def) |
418 apply (rule analz_insert_eq_I) |
418 apply (rule analz_insert_eq_I) |
427 apply (erule analz.induct, auto) |
427 apply (erule analz.induct, auto) |
428 apply (erule analz.induct) |
428 apply (erule analz.induct) |
429 apply (blast intro: analz.Fst analz.Snd)+ |
429 apply (blast intro: analz.Fst analz.Snd)+ |
430 done |
430 done |
431 |
431 |
432 text{*Can pull out enCrypted message if the Key is not known*} |
432 text\<open>Can pull out enCrypted message if the Key is not known\<close> |
433 lemma analz_insert_Crypt: |
433 lemma analz_insert_Crypt: |
434 "Key (invKey K) \<notin> analz H |
434 "Key (invKey K) \<notin> analz H |
435 ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
435 ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
436 apply (rule analz_insert_eq_I) |
436 apply (rule analz_insert_eq_I) |
437 apply (erule analz.induct, auto) |
437 apply (erule analz.induct, auto) |
457 "Key (invKey K) \<in> analz H ==> |
457 "Key (invKey K) \<in> analz H ==> |
458 analz (insert (Crypt K X) H) = |
458 analz (insert (Crypt K X) H) = |
459 insert (Crypt K X) (analz (insert X H))" |
459 insert (Crypt K X) (analz (insert X H))" |
460 by (intro equalityI lemma1 lemma2) |
460 by (intro equalityI lemma1 lemma2) |
461 |
461 |
462 text{*Case analysis: either the message is secure, or it is not! Effective, |
462 text\<open>Case analysis: either the message is secure, or it is not! Effective, |
463 but can cause subgoals to blow up! Use with @{text "if_split"}; apparently |
463 but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently |
464 @{text "split_tac"} does not cope with patterns such as @{term"analz (insert |
464 \<open>split_tac\<close> does not cope with patterns such as @{term"analz (insert |
465 (Crypt K X) H)"} *} |
465 (Crypt K X) H)"}\<close> |
466 lemma analz_Crypt_if [simp]: |
466 lemma analz_Crypt_if [simp]: |
467 "analz (insert (Crypt K X) H) = |
467 "analz (insert (Crypt K X) H) = |
468 (if (Key (invKey K) \<in> analz H) |
468 (if (Key (invKey K) \<in> analz H) |
469 then insert (Crypt K X) (analz (insert X H)) |
469 then insert (Crypt K X) (analz (insert X H)) |
470 else insert (Crypt K X) (analz H))" |
470 else insert (Crypt K X) (analz H))" |
471 by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
471 by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
472 |
472 |
473 |
473 |
474 text{*This rule supposes "for the sake of argument" that we have the key.*} |
474 text\<open>This rule supposes "for the sake of argument" that we have the key.\<close> |
475 lemma analz_insert_Crypt_subset: |
475 lemma analz_insert_Crypt_subset: |
476 "analz (insert (Crypt K X) H) \<subseteq> |
476 "analz (insert (Crypt K X) H) \<subseteq> |
477 insert (Crypt K X) (analz (insert X H))" |
477 insert (Crypt K X) (analz (insert X H))" |
478 apply (rule subsetI) |
478 apply (rule subsetI) |
479 apply (erule analz.induct, auto) |
479 apply (erule analz.induct, auto) |
507 declare analz_trans[intro] |
507 declare analz_trans[intro] |
508 |
508 |
509 lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" |
509 lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" |
510 by (metis analz_idem analz_increasing analz_mono insert_absorb insert_mono insert_subset) |
510 by (metis analz_idem analz_increasing analz_mono insert_absorb insert_mono insert_subset) |
511 |
511 |
512 text{*This rewrite rule helps in the simplification of messages that involve |
512 text\<open>This rewrite rule helps in the simplification of messages that involve |
513 the forwarding of unknown components (X). Without it, removing occurrences |
513 the forwarding of unknown components (X). Without it, removing occurrences |
514 of X can be very complicated. *} |
514 of X can be very complicated.\<close> |
515 lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" |
515 lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" |
516 by (blast intro: analz_cut analz_insertI) |
516 by (blast intro: analz_cut analz_insertI) |
517 |
517 |
518 |
518 |
519 text{*A congruence rule for "analz" *} |
519 text\<open>A congruence rule for "analz"\<close> |
520 |
520 |
521 lemma analz_subset_cong: |
521 lemma analz_subset_cong: |
522 "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] |
522 "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] |
523 ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
523 ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
524 apply simp |
524 apply simp |
533 |
533 |
534 lemma analz_insert_cong: |
534 lemma analz_insert_cong: |
535 "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" |
535 "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" |
536 by (force simp only: insert_def intro!: analz_cong) |
536 by (force simp only: insert_def intro!: analz_cong) |
537 |
537 |
538 text{*If there are no pairs or encryptions then analz does nothing*} |
538 text\<open>If there are no pairs or encryptions then analz does nothing\<close> |
539 lemma analz_trivial: |
539 lemma analz_trivial: |
540 "[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" |
540 "[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" |
541 apply safe |
541 apply safe |
542 apply (erule analz.induct, blast+) |
542 apply (erule analz.induct, blast+) |
543 done |
543 done |
544 |
544 |
545 text{*These two are obsolete (with a single Spy) but cost little to prove...*} |
545 text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close> |
546 lemma analz_UN_analz_lemma: |
546 lemma analz_UN_analz_lemma: |
547 "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" |
547 "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" |
548 apply (erule analz.induct) |
548 apply (erule analz.induct) |
549 apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ |
549 apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ |
550 done |
550 done |
551 |
551 |
552 lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" |
552 lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" |
553 by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) |
553 by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) |
554 |
554 |
555 |
555 |
556 subsection{*Inductive relation "synth"*} |
556 subsection\<open>Inductive relation "synth"\<close> |
557 |
557 |
558 text{*Inductive definition of "synth" -- what can be built up from a set of |
558 text\<open>Inductive definition of "synth" -- what can be built up from a set of |
559 messages. A form of upward closure. Pairs can be built, messages |
559 messages. A form of upward closure. Pairs can be built, messages |
560 encrypted with known keys. Agent names are public domain. |
560 encrypted with known keys. Agent names are public domain. |
561 Numbers can be guessed, but Nonces cannot be. *} |
561 Numbers can be guessed, but Nonces cannot be.\<close> |
562 |
562 |
563 inductive_set |
563 inductive_set |
564 synth :: "msg set => msg set" |
564 synth :: "msg set => msg set" |
565 for H :: "msg set" |
565 for H :: "msg set" |
566 where |
566 where |
569 | Number [intro]: "Number n \<in> synth H" |
569 | Number [intro]: "Number n \<in> synth H" |
570 | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" |
570 | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" |
571 | MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H" |
571 | MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H" |
572 | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" |
572 | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" |
573 |
573 |
574 text{*Monotonicity*} |
574 text\<open>Monotonicity\<close> |
575 lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" |
575 lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" |
576 by (auto, erule synth.induct, auto) |
576 by (auto, erule synth.induct, auto) |
577 |
577 |
578 text{*NO @{text Agent_synth}, as any Agent name can be synthesized. |
578 text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized. |
579 The same holds for @{term Number}*} |
579 The same holds for @{term Number}\<close> |
580 inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" |
580 inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" |
581 inductive_cases Key_synth [elim!]: "Key K \<in> synth H" |
581 inductive_cases Key_synth [elim!]: "Key K \<in> synth H" |
582 inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" |
582 inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" |
583 inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H" |
583 inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H" |
584 inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" |
584 inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" |
585 |
585 |
586 |
586 |
587 lemma synth_increasing: "H \<subseteq> synth(H)" |
587 lemma synth_increasing: "H \<subseteq> synth(H)" |
588 by blast |
588 by blast |
589 |
589 |
590 subsubsection{*Unions *} |
590 subsubsection\<open>Unions\<close> |
591 |
591 |
592 text{*Converse fails: we can synth more from the union than from the |
592 text\<open>Converse fails: we can synth more from the union than from the |
593 separate parts, building a compound message using elements of each.*} |
593 separate parts, building a compound message using elements of each.\<close> |
594 lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
594 lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
595 by (intro Un_least synth_mono Un_upper1 Un_upper2) |
595 by (intro Un_least synth_mono Un_upper1 Un_upper2) |
596 |
596 |
597 lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
597 lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
598 by (metis insert_iff insert_subset subset_insertI synth.Inj synth_mono) |
598 by (metis insert_iff insert_subset subset_insertI synth.Inj synth_mono) |
599 |
599 |
600 subsubsection{*Idempotence and transitivity *} |
600 subsubsection\<open>Idempotence and transitivity\<close> |
601 |
601 |
602 lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" |
602 lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" |
603 by (erule synth.induct, blast+) |
603 by (erule synth.induct, blast+) |
604 |
604 |
605 lemma synth_idem: "synth (synth H) = synth H" |
605 lemma synth_idem: "synth (synth H) = synth H" |