src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy
changeset 63167 0909deb8059b
parent 63092 a949b2a5f51d
child 63333 158ab2239496
equal deleted inserted replaced
63166:143f58bb34f9 63167:0909deb8059b
  1646   { fix x assume "x \<in> space M"
  1646   { fix x assume "x \<in> space M"
  1647     have "(\<lambda>i::nat. if i < f x then 1 else 0) sums ennreal_of_enat (f x)"
  1647     have "(\<lambda>i::nat. if i < f x then 1 else 0) sums ennreal_of_enat (f x)"
  1648       using sums_If_finite[of "\<lambda>r. r < f x" "\<lambda>_. 1 :: ennreal"]
  1648       using sums_If_finite[of "\<lambda>r. r < f x" "\<lambda>_. 1 :: ennreal"]
  1649       by (cases "f x") (simp_all add: sums_def of_nat_tendsto_top_ennreal)
  1649       by (cases "f x") (simp_all add: sums_def of_nat_tendsto_top_ennreal)
  1650     also have "(\<lambda>i. (if i < f x then 1 else 0)) = (\<lambda>i. indicator (F i) x)"
  1650     also have "(\<lambda>i. (if i < f x then 1 else 0)) = (\<lambda>i. indicator (F i) x)"
  1651       using `x \<in> space M` by (simp add: one_ennreal_def F_def fun_eq_iff)
  1651       using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def fun_eq_iff)
  1652     finally have "ennreal_of_enat (f x) = (\<Sum>i. indicator (F i) x)"
  1652     finally have "ennreal_of_enat (f x) = (\<Sum>i. indicator (F i) x)"
  1653       by (simp add: sums_iff) }
  1653       by (simp add: sums_iff) }
  1654   then have "(\<integral>\<^sup>+x. ennreal_of_enat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)"
  1654   then have "(\<integral>\<^sup>+x. ennreal_of_enat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)"
  1655     by (simp cong: nn_integral_cong)
  1655     by (simp cong: nn_integral_cong)
  1656   also have "\<dots> = (\<Sum>i. emeasure M (F i))"
  1656   also have "\<dots> = (\<Sum>i. emeasure M (F i))"