src/HOL/Library/Boolean_Algebra.thy
changeset 65343 0a8e30a7b10e
parent 63462 c1fe30f2bc32
child 70186 18e94864fd0f
equal deleted inserted replaced
65342:e32eb488c3a3 65343:0a8e30a7b10e
     7 theory Boolean_Algebra
     7 theory Boolean_Algebra
     8   imports Main
     8   imports Main
     9 begin
     9 begin
    10 
    10 
    11 locale boolean =
    11 locale boolean =
    12   fixes conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<sqinter>" 70)
    12   fixes conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "\<sqinter>" 70)
    13   fixes disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<squnion>" 65)
    13     and disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "\<squnion>" 65)
    14   fixes compl :: "'a \<Rightarrow> 'a" ("\<sim> _" [81] 80)
    14     and compl :: "'a \<Rightarrow> 'a"  ("\<sim> _" [81] 80)
    15   fixes zero :: "'a" ("\<zero>")
    15     and zero :: "'a"  ("\<zero>")
    16   fixes one  :: "'a" ("\<one>")
    16     and one  :: "'a"  ("\<one>")
    17   assumes conj_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
    17   assumes conj_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
    18   assumes disj_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
    18     and disj_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
    19   assumes conj_commute: "x \<sqinter> y = y \<sqinter> x"
    19     and conj_commute: "x \<sqinter> y = y \<sqinter> x"
    20   assumes disj_commute: "x \<squnion> y = y \<squnion> x"
    20     and disj_commute: "x \<squnion> y = y \<squnion> x"
    21   assumes conj_disj_distrib: "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
    21     and conj_disj_distrib: "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
    22   assumes disj_conj_distrib: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
    22     and disj_conj_distrib: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
    23   assumes conj_one_right [simp]: "x \<sqinter> \<one> = x"
    23     and conj_one_right [simp]: "x \<sqinter> \<one> = x"
    24   assumes disj_zero_right [simp]: "x \<squnion> \<zero> = x"
    24     and disj_zero_right [simp]: "x \<squnion> \<zero> = x"
    25   assumes conj_cancel_right [simp]: "x \<sqinter> \<sim> x = \<zero>"
    25     and conj_cancel_right [simp]: "x \<sqinter> \<sim> x = \<zero>"
    26   assumes disj_cancel_right [simp]: "x \<squnion> \<sim> x = \<one>"
    26     and disj_cancel_right [simp]: "x \<squnion> \<sim> x = \<one>"
    27 begin
    27 begin
    28 
    28 
    29 sublocale conj: abel_semigroup conj
    29 sublocale conj: abel_semigroup conj
    30   by standard (fact conj_assoc conj_commute)+
    30   by standard (fact conj_assoc conj_commute)+
    31 
    31 
    32 sublocale disj: abel_semigroup disj
    32 sublocale disj: abel_semigroup disj
    33   by standard (fact disj_assoc disj_commute)+
    33   by standard (fact disj_assoc disj_commute)+
    34 
    34 
    35 lemmas conj_left_commute = conj.left_commute
    35 lemmas conj_left_commute = conj.left_commute
    36 
       
    37 lemmas disj_left_commute = disj.left_commute
    36 lemmas disj_left_commute = disj.left_commute
    38 
    37 
    39 lemmas conj_ac = conj.assoc conj.commute conj.left_commute
    38 lemmas conj_ac = conj.assoc conj.commute conj.left_commute
    40 lemmas disj_ac = disj.assoc disj.commute disj.left_commute
    39 lemmas disj_ac = disj.assoc disj.commute disj.left_commute
    41 
    40 
    42 lemma dual: "boolean disj conj compl one zero"
    41 lemma dual: "boolean disj conj compl one zero"
    43   apply (rule boolean.intro)
    42   apply (rule boolean.intro)
    44   apply (rule disj_assoc)
    43            apply (rule disj_assoc)
    45   apply (rule conj_assoc)
    44           apply (rule conj_assoc)
    46   apply (rule disj_commute)
    45          apply (rule disj_commute)
    47   apply (rule conj_commute)
    46         apply (rule conj_commute)
    48   apply (rule disj_conj_distrib)
    47        apply (rule disj_conj_distrib)
    49   apply (rule conj_disj_distrib)
    48       apply (rule conj_disj_distrib)
    50   apply (rule disj_zero_right)
    49      apply (rule disj_zero_right)
    51   apply (rule conj_one_right)
    50     apply (rule conj_one_right)
    52   apply (rule disj_cancel_right)
    51    apply (rule disj_cancel_right)
    53   apply (rule conj_cancel_right)
    52   apply (rule conj_cancel_right)
    54   done
    53   done
    55 
    54 
    56 
    55 
    57 subsection \<open>Complement\<close>
    56 subsection \<open>Complement\<close>
    61   assumes 2: "a \<squnion> x = \<one>"
    60   assumes 2: "a \<squnion> x = \<one>"
    62   assumes 3: "a \<sqinter> y = \<zero>"
    61   assumes 3: "a \<sqinter> y = \<zero>"
    63   assumes 4: "a \<squnion> y = \<one>"
    62   assumes 4: "a \<squnion> y = \<one>"
    64   shows "x = y"
    63   shows "x = y"
    65 proof -
    64 proof -
    66   have "(a \<sqinter> x) \<squnion> (x \<sqinter> y) = (a \<sqinter> y) \<squnion> (x \<sqinter> y)"
    65   from 1 3 have "(a \<sqinter> x) \<squnion> (x \<sqinter> y) = (a \<sqinter> y) \<squnion> (x \<sqinter> y)"
    67     using 1 3 by simp
    66     by simp
    68   then have "(x \<sqinter> a) \<squnion> (x \<sqinter> y) = (y \<sqinter> a) \<squnion> (y \<sqinter> x)"
    67   then have "(x \<sqinter> a) \<squnion> (x \<sqinter> y) = (y \<sqinter> a) \<squnion> (y \<sqinter> x)"
    69     using conj_commute by simp
    68     by (simp add: conj_commute)
    70   then have "x \<sqinter> (a \<squnion> y) = y \<sqinter> (a \<squnion> x)"
    69   then have "x \<sqinter> (a \<squnion> y) = y \<sqinter> (a \<squnion> x)"
    71     using conj_disj_distrib by simp
    70     by (simp add: conj_disj_distrib)
    72   then have "x \<sqinter> \<one> = y \<sqinter> \<one>"
    71   with 2 4 have "x \<sqinter> \<one> = y \<sqinter> \<one>"
    73     using 2 4 by simp
    72     by simp
    74   then show "x = y"
    73   then show "x = y"
    75     using conj_one_right by simp
    74     by simp
    76 qed
    75 qed
    77 
    76 
    78 lemma compl_unique: "x \<sqinter> y = \<zero> \<Longrightarrow> x \<squnion> y = \<one> \<Longrightarrow> \<sim> x = y"
    77 lemma compl_unique: "x \<sqinter> y = \<zero> \<Longrightarrow> x \<squnion> y = \<one> \<Longrightarrow> \<sim> x = y"
    79   by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
    78   by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
    80 
    79 
    81 lemma double_compl [simp]: "\<sim> (\<sim> x) = x"
    80 lemma double_compl [simp]: "\<sim> (\<sim> x) = x"
    82 proof (rule compl_unique)
    81 proof (rule compl_unique)
    83   from conj_cancel_right show "\<sim> x \<sqinter> x = \<zero>"
    82   show "\<sim> x \<sqinter> x = \<zero>"
    84     by (simp only: conj_commute)
    83     by (simp only: conj_cancel_right conj_commute)
    85   from disj_cancel_right show "\<sim> x \<squnion> x = \<one>"
    84   show "\<sim> x \<squnion> x = \<one>"
    86     by (simp only: disj_commute)
    85     by (simp only: disj_cancel_right disj_commute)
    87 qed
    86 qed
    88 
    87 
    89 lemma compl_eq_compl_iff [simp]: "\<sim> x = \<sim> y \<longleftrightarrow> x = y"
    88 lemma compl_eq_compl_iff [simp]: "\<sim> x = \<sim> y \<longleftrightarrow> x = y"
    90   by (rule inj_eq [OF inj_on_inverseI]) (rule double_compl)
    89   by (rule inj_eq [OF inj_on_inverseI]) (rule double_compl)
    91 
    90 
    93 subsection \<open>Conjunction\<close>
    92 subsection \<open>Conjunction\<close>
    94 
    93 
    95 lemma conj_absorb [simp]: "x \<sqinter> x = x"
    94 lemma conj_absorb [simp]: "x \<sqinter> x = x"
    96 proof -
    95 proof -
    97   have "x \<sqinter> x = (x \<sqinter> x) \<squnion> \<zero>"
    96   have "x \<sqinter> x = (x \<sqinter> x) \<squnion> \<zero>"
    98     using disj_zero_right by simp
    97     by simp
    99   also have "... = (x \<sqinter> x) \<squnion> (x \<sqinter> \<sim> x)"
    98   also have "\<dots> = (x \<sqinter> x) \<squnion> (x \<sqinter> \<sim> x)"
   100     using conj_cancel_right by simp
    99     by simp
   101   also have "... = x \<sqinter> (x \<squnion> \<sim> x)"
   100   also have "\<dots> = x \<sqinter> (x \<squnion> \<sim> x)"
   102     using conj_disj_distrib by (simp only:)
   101     by (simp only: conj_disj_distrib)
   103   also have "... = x \<sqinter> \<one>"
   102   also have "\<dots> = x \<sqinter> \<one>"
   104     using disj_cancel_right by simp
   103     by simp
   105   also have "... = x"
   104   also have "\<dots> = x"
   106     using conj_one_right by simp
   105     by simp
   107   finally show ?thesis .
   106   finally show ?thesis .
   108 qed
   107 qed
   109 
   108 
   110 lemma conj_zero_right [simp]: "x \<sqinter> \<zero> = \<zero>"
   109 lemma conj_zero_right [simp]: "x \<sqinter> \<zero> = \<zero>"
   111 proof -
   110 proof -
   112   have "x \<sqinter> \<zero> = x \<sqinter> (x \<sqinter> \<sim> x)"
   111   from conj_cancel_right have "x \<sqinter> \<zero> = x \<sqinter> (x \<sqinter> \<sim> x)"
   113     using conj_cancel_right by simp
   112     by simp
   114   also have "... = (x \<sqinter> x) \<sqinter> \<sim> x"
   113   also from conj_assoc have "\<dots> = (x \<sqinter> x) \<sqinter> \<sim> x"
   115     using conj_assoc by (simp only:)
   114     by (simp only:)
   116   also have "... = x \<sqinter> \<sim> x"
   115   also from conj_absorb have "\<dots> = x \<sqinter> \<sim> x"
   117     using conj_absorb by simp
   116     by simp
   118   also have "... = \<zero>"
   117   also have "\<dots> = \<zero>"
   119     using conj_cancel_right by simp
   118     by simp
   120   finally show ?thesis .
   119   finally show ?thesis .
   121 qed
   120 qed
   122 
   121 
   123 lemma compl_one [simp]: "\<sim> \<one> = \<zero>"
   122 lemma compl_one [simp]: "\<sim> \<one> = \<zero>"
   124   by (rule compl_unique [OF conj_zero_right disj_zero_right])
   123   by (rule compl_unique [OF conj_zero_right disj_zero_right])
   174 
   173 
   175 lemma de_Morgan_conj [simp]: "\<sim> (x \<sqinter> y) = \<sim> x \<squnion> \<sim> y"
   174 lemma de_Morgan_conj [simp]: "\<sim> (x \<sqinter> y) = \<sim> x \<squnion> \<sim> y"
   176 proof (rule compl_unique)
   175 proof (rule compl_unique)
   177   have "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = ((x \<sqinter> y) \<sqinter> \<sim> x) \<squnion> ((x \<sqinter> y) \<sqinter> \<sim> y)"
   176   have "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = ((x \<sqinter> y) \<sqinter> \<sim> x) \<squnion> ((x \<sqinter> y) \<sqinter> \<sim> y)"
   178     by (rule conj_disj_distrib)
   177     by (rule conj_disj_distrib)
   179   also have "... = (y \<sqinter> (x \<sqinter> \<sim> x)) \<squnion> (x \<sqinter> (y \<sqinter> \<sim> y))"
   178   also have "\<dots> = (y \<sqinter> (x \<sqinter> \<sim> x)) \<squnion> (x \<sqinter> (y \<sqinter> \<sim> y))"
   180     by (simp only: conj_ac)
   179     by (simp only: conj_ac)
   181   finally show "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = \<zero>"
   180   finally show "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = \<zero>"
   182     by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
   181     by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
   183 next
   182 next
   184   have "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = (x \<squnion> (\<sim> x \<squnion> \<sim> y)) \<sqinter> (y \<squnion> (\<sim> x \<squnion> \<sim> y))"
   183   have "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = (x \<squnion> (\<sim> x \<squnion> \<sim> y)) \<sqinter> (y \<squnion> (\<sim> x \<squnion> \<sim> y))"
   185     by (rule disj_conj_distrib2)
   184     by (rule disj_conj_distrib2)
   186   also have "... = (\<sim> y \<squnion> (x \<squnion> \<sim> x)) \<sqinter> (\<sim> x \<squnion> (y \<squnion> \<sim> y))"
   185   also have "\<dots> = (\<sim> y \<squnion> (x \<squnion> \<sim> x)) \<sqinter> (\<sim> x \<squnion> (y \<squnion> \<sim> y))"
   187     by (simp only: disj_ac)
   186     by (simp only: disj_ac)
   188   finally show "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = \<one>"
   187   finally show "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = \<one>"
   189     by (simp only: disj_cancel_right disj_one_right conj_one_right)
   188     by (simp only: disj_cancel_right disj_one_right conj_one_right)
   190 qed
   189 qed
   191 
   190 
   203 begin
   202 begin
   204 
   203 
   205 sublocale xor: abel_semigroup xor
   204 sublocale xor: abel_semigroup xor
   206 proof
   205 proof
   207   fix x y z :: 'a
   206   fix x y z :: 'a
   208   let ?t = "(x \<sqinter> y \<sqinter> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> \<sim> z) \<squnion>
   207   let ?t = "(x \<sqinter> y \<sqinter> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> \<sim> z) \<squnion> (\<sim> x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (\<sim> x \<sqinter> \<sim> y \<sqinter> z)"
   209             (\<sim> x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (\<sim> x \<sqinter> \<sim> y \<sqinter> z)"
   208   have "?t \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> y \<sqinter> \<sim> y) = ?t \<squnion> (x \<sqinter> y \<sqinter> \<sim> y) \<squnion> (x \<sqinter> z \<sqinter> \<sim> z)"
   210   have "?t \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> y \<sqinter> \<sim> y) =
       
   211         ?t \<squnion> (x \<sqinter> y \<sqinter> \<sim> y) \<squnion> (x \<sqinter> z \<sqinter> \<sim> z)"
       
   212     by (simp only: conj_cancel_right conj_zero_right)
   209     by (simp only: conj_cancel_right conj_zero_right)
   213   then show "(x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
   210   then show "(x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
   214     apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
   211     by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
   215     apply (simp only: conj_disj_distribs conj_ac disj_ac)
   212       (simp only: conj_disj_distribs conj_ac disj_ac)
   216     done
       
   217   show "x \<oplus> y = y \<oplus> x"
   213   show "x \<oplus> y = y \<oplus> x"
   218     by (simp only: xor_def conj_commute disj_commute)
   214     by (simp only: xor_def conj_commute disj_commute)
   219 qed
   215 qed
   220 
   216 
   221 lemmas xor_assoc = xor.assoc
   217 lemmas xor_assoc = xor.assoc