doc-src/Classes/Thy/Classes.thy
changeset 31931 0b1d807b1c2d
parent 31691 7d50527dc008
child 35282 8fd9d555d04d
equal deleted inserted replaced
31930:3107b9af1fb3 31931:0b1d807b1c2d
   196 
   196 
   197 instantiation %quote * :: (semigroup, semigroup) semigroup
   197 instantiation %quote * :: (semigroup, semigroup) semigroup
   198 begin
   198 begin
   199 
   199 
   200 definition %quote
   200 definition %quote
   201   mult_prod_def: "p1 \<otimes> p2 = (fst p1 \<otimes> fst p2, snd p1 \<otimes> snd p2)"
   201   mult_prod_def: "p\<^isub>1 \<otimes> p\<^isub>2 = (fst p\<^isub>1 \<otimes> fst p\<^isub>2, snd p\<^isub>1 \<otimes> snd p\<^isub>2)"
   202 
   202 
   203 instance %quote proof
   203 instance %quote proof
   204   fix p1 p2 p3 :: "\<alpha>\<Colon>semigroup \<times> \<beta>\<Colon>semigroup"
   204   fix p\<^isub>1 p\<^isub>2 p\<^isub>3 :: "\<alpha>\<Colon>semigroup \<times> \<beta>\<Colon>semigroup"
   205   show "p1 \<otimes> p2 \<otimes> p3 = p1 \<otimes> (p2 \<otimes> p3)"
   205   show "p\<^isub>1 \<otimes> p\<^isub>2 \<otimes> p\<^isub>3 = p\<^isub>1 \<otimes> (p\<^isub>2 \<otimes> p\<^isub>3)"
   206     unfolding mult_prod_def by (simp add: assoc)
   206     unfolding mult_prod_def by (simp add: assoc)
   207 qed      
   207 qed      
   208 
   208 
   209 end %quote
   209 end %quote
   210 
   210