NEWS
changeset 76699 0b5efc6de385
parent 76698 e65a50f6c2de
child 76735 e8ad377e1184
child 76737 9d9a2731a4e3
child 76743 d33fc5228aae
equal deleted inserted replaced
76681:8ad17c4669da 76699:0b5efc6de385
    32     discouraged. Minor INCOMPATIBILITY.
    32     discouraged. Minor INCOMPATIBILITY.
    33   - Added predicates sym_on and symp_on and redefined sym and
    33   - Added predicates sym_on and symp_on and redefined sym and
    34     symp to be abbreviations. Lemmas sym_def and symp_def are explicitly
    34     symp to be abbreviations. Lemmas sym_def and symp_def are explicitly
    35     provided for backward compatibility but their usage is discouraged.
    35     provided for backward compatibility but their usage is discouraged.
    36     Minor INCOMPATIBILITY.
    36     Minor INCOMPATIBILITY.
       
    37   - Added predicates asym_on and asymp_on and redefined asym and
       
    38     asymp to be abbreviations. INCOMPATIBILITY.
    37   - Added predicates antisym_on and antisymp_on and redefined antisym and
    39   - Added predicates antisym_on and antisymp_on and redefined antisym and
    38     antisymp to be abbreviations. Lemmas antisym_def and antisymp_def are
    40     antisymp to be abbreviations. Lemmas antisym_def and antisymp_def are
    39     explicitly provided for backward compatibility but their usage is
    41     explicitly provided for backward compatibility but their usage is
    40     discouraged. Minor INCOMPATIBILITY.
    42     discouraged. Minor INCOMPATIBILITY.
    41   - Strengthened (and renamed) lemmas. Minor INCOMPATIBILITY.
    43   - Strengthened (and renamed) lemmas. Minor INCOMPATIBILITY.
    42       order.antisymp_ge[simp] ~> order.antisymp_on_ge[simp]
    44       order.antisymp_ge[simp] ~> order.antisymp_on_ge[simp]
    43       order.antisymp_le[simp] ~> order.antisymp_on_le[simp]
    45       order.antisymp_le[simp] ~> order.antisymp_on_le[simp]
       
    46       preorder.asymp_greater[simp] ~> preorder.asymp_on_greater[simp]
       
    47       preorder.asymp_less[simp] ~> preorder.asymp_on_less[simp]
    44       preorder.irreflp_greater[simp] ~> preorder.irreflp_on_greater[simp]
    48       preorder.irreflp_greater[simp] ~> preorder.irreflp_on_greater[simp]
    45       preorder.irreflp_less[simp] ~> preorder.irreflp_on_less[simp]
    49       preorder.irreflp_less[simp] ~> preorder.irreflp_on_less[simp]
    46       reflp_equality[simp] ~> reflp_on_equality[simp]
    50       reflp_equality[simp] ~> reflp_on_equality[simp]
    47       total_on_singleton
    51       total_on_singleton
       
    52       sym_converse[simp] ~> sym_on_converse[simp]
       
    53       antisym_converse[simp] ~> antisym_on_converse[simp]
    48   - Added lemmas.
    54   - Added lemmas.
    49       antisym_if_asymp
       
    50       antisym_onD
    55       antisym_onD
    51       antisym_onI
    56       antisym_onI
       
    57       antisym_on_if_asymp_on
    52       antisym_on_subset
    58       antisym_on_subset
    53       antisymp_if_asymp
       
    54       antisymp_onD
    59       antisymp_onD
    55       antisymp_onI
    60       antisymp_onI
    56       antisymp_on_antisym_on_eq[pred_set_conv]
    61       antisymp_on_antisym_on_eq[pred_set_conv]
       
    62       antisymp_on_conversep[simp]
       
    63       antisymp_on_if_asymp_on
    57       antisymp_on_subset
    64       antisymp_on_subset
    58       asym_if_irrefl_and_trans
    65       asym_on_iff_irrefl_on_if_trans
    59       asymp_if_irreflp_and_transp
    66       asym_onD
       
    67       asym_onI
       
    68       asym_on_converse[simp]
       
    69       asymp_on_iff_irreflp_on_if_transp
       
    70       asymp_onD
       
    71       asymp_onI
       
    72       asymp_on_asym_on_eq[pred_set_conv]
       
    73       asymp_on_conversep[simp]
    60       irreflD
    74       irreflD
    61       irrefl_onD
    75       irrefl_onD
    62       irrefl_onI
    76       irrefl_onI
    63       irrefl_on_converse[simp]
    77       irrefl_on_converse[simp]
    64       irrefl_on_subset
    78       irrefl_on_subset
    72       linorder.totalp_on_greater[simp]
    86       linorder.totalp_on_greater[simp]
    73       linorder.totalp_on_le[simp]
    87       linorder.totalp_on_le[simp]
    74       linorder.totalp_on_less[simp]
    88       linorder.totalp_on_less[simp]
    75       order.antisymp_ge[simp]
    89       order.antisymp_ge[simp]
    76       order.antisymp_le[simp]
    90       order.antisymp_le[simp]
    77       preorder.antisymp_greater[simp]
    91       preorder.antisymp_on_greater[simp]
    78       preorder.antisymp_less[simp]
    92       preorder.antisymp_on_less[simp]
    79       preorder.reflp_on_ge[simp]
    93       preorder.reflp_on_ge[simp]
    80       preorder.reflp_on_le[simp]
    94       preorder.reflp_on_le[simp]
       
    95       reflD
       
    96       reflI
    81       reflp_on_conversp[simp]
    97       reflp_on_conversp[simp]
    82       sym_onD
    98       sym_onD
    83       sym_onI
    99       sym_onI
    84       sym_on_subset
   100       sym_on_subset
    85       symp_onD
   101       symp_onD
    86       symp_onI
   102       symp_onI
       
   103       symp_on_conversep[simp]
    87       symp_on_subset
   104       symp_on_subset
    88       symp_on_sym_on_eq[pred_set_conv]
   105       symp_on_sym_on_eq[pred_set_conv]
    89       totalI
   106       totalI
    90       totalp_on_converse[simp]
   107       totalp_on_converse[simp]
    91       totalp_on_singleton[simp]
   108       totalp_on_singleton[simp]
   101       reflp_on_reflclp[simp]
   118       reflp_on_reflclp[simp]
   102       transp_reflclp[simp]
   119       transp_reflclp[simp]
   103 
   120 
   104 * Theory "HOL.Wellfounded":
   121 * Theory "HOL.Wellfounded":
   105   - Added lemmas.
   122   - Added lemmas.
       
   123       asym_lex_prod[simp]
       
   124       asym_on_lex_prod[simp]
       
   125       irrefl_lex_prod[simp]
       
   126       irrefl_on_lex_prod[simp]
       
   127       refl_lex_prod[simp]
       
   128       sym_lex_prod[simp]
       
   129       sym_on_lex_prod[simp]
   106       wfP_if_convertible_to_nat
   130       wfP_if_convertible_to_nat
   107       wfP_if_convertible_to_wfP
   131       wfP_if_convertible_to_wfP
   108       wf_if_convertible_to_wf
   132       wf_if_convertible_to_wf
   109 
   133 
   110 * Theory "HOL-Library.FSet":
   134 * Theory "HOL-Library.FSet":