32 discouraged. Minor INCOMPATIBILITY. |
32 discouraged. Minor INCOMPATIBILITY. |
33 - Added predicates sym_on and symp_on and redefined sym and |
33 - Added predicates sym_on and symp_on and redefined sym and |
34 symp to be abbreviations. Lemmas sym_def and symp_def are explicitly |
34 symp to be abbreviations. Lemmas sym_def and symp_def are explicitly |
35 provided for backward compatibility but their usage is discouraged. |
35 provided for backward compatibility but their usage is discouraged. |
36 Minor INCOMPATIBILITY. |
36 Minor INCOMPATIBILITY. |
|
37 - Added predicates asym_on and asymp_on and redefined asym and |
|
38 asymp to be abbreviations. INCOMPATIBILITY. |
37 - Added predicates antisym_on and antisymp_on and redefined antisym and |
39 - Added predicates antisym_on and antisymp_on and redefined antisym and |
38 antisymp to be abbreviations. Lemmas antisym_def and antisymp_def are |
40 antisymp to be abbreviations. Lemmas antisym_def and antisymp_def are |
39 explicitly provided for backward compatibility but their usage is |
41 explicitly provided for backward compatibility but their usage is |
40 discouraged. Minor INCOMPATIBILITY. |
42 discouraged. Minor INCOMPATIBILITY. |
41 - Strengthened (and renamed) lemmas. Minor INCOMPATIBILITY. |
43 - Strengthened (and renamed) lemmas. Minor INCOMPATIBILITY. |
42 order.antisymp_ge[simp] ~> order.antisymp_on_ge[simp] |
44 order.antisymp_ge[simp] ~> order.antisymp_on_ge[simp] |
43 order.antisymp_le[simp] ~> order.antisymp_on_le[simp] |
45 order.antisymp_le[simp] ~> order.antisymp_on_le[simp] |
|
46 preorder.asymp_greater[simp] ~> preorder.asymp_on_greater[simp] |
|
47 preorder.asymp_less[simp] ~> preorder.asymp_on_less[simp] |
44 preorder.irreflp_greater[simp] ~> preorder.irreflp_on_greater[simp] |
48 preorder.irreflp_greater[simp] ~> preorder.irreflp_on_greater[simp] |
45 preorder.irreflp_less[simp] ~> preorder.irreflp_on_less[simp] |
49 preorder.irreflp_less[simp] ~> preorder.irreflp_on_less[simp] |
46 reflp_equality[simp] ~> reflp_on_equality[simp] |
50 reflp_equality[simp] ~> reflp_on_equality[simp] |
47 total_on_singleton |
51 total_on_singleton |
|
52 sym_converse[simp] ~> sym_on_converse[simp] |
|
53 antisym_converse[simp] ~> antisym_on_converse[simp] |
48 - Added lemmas. |
54 - Added lemmas. |
49 antisym_if_asymp |
|
50 antisym_onD |
55 antisym_onD |
51 antisym_onI |
56 antisym_onI |
|
57 antisym_on_if_asymp_on |
52 antisym_on_subset |
58 antisym_on_subset |
53 antisymp_if_asymp |
|
54 antisymp_onD |
59 antisymp_onD |
55 antisymp_onI |
60 antisymp_onI |
56 antisymp_on_antisym_on_eq[pred_set_conv] |
61 antisymp_on_antisym_on_eq[pred_set_conv] |
|
62 antisymp_on_conversep[simp] |
|
63 antisymp_on_if_asymp_on |
57 antisymp_on_subset |
64 antisymp_on_subset |
58 asym_if_irrefl_and_trans |
65 asym_on_iff_irrefl_on_if_trans |
59 asymp_if_irreflp_and_transp |
66 asym_onD |
|
67 asym_onI |
|
68 asym_on_converse[simp] |
|
69 asymp_on_iff_irreflp_on_if_transp |
|
70 asymp_onD |
|
71 asymp_onI |
|
72 asymp_on_asym_on_eq[pred_set_conv] |
|
73 asymp_on_conversep[simp] |
60 irreflD |
74 irreflD |
61 irrefl_onD |
75 irrefl_onD |
62 irrefl_onI |
76 irrefl_onI |
63 irrefl_on_converse[simp] |
77 irrefl_on_converse[simp] |
64 irrefl_on_subset |
78 irrefl_on_subset |
72 linorder.totalp_on_greater[simp] |
86 linorder.totalp_on_greater[simp] |
73 linorder.totalp_on_le[simp] |
87 linorder.totalp_on_le[simp] |
74 linorder.totalp_on_less[simp] |
88 linorder.totalp_on_less[simp] |
75 order.antisymp_ge[simp] |
89 order.antisymp_ge[simp] |
76 order.antisymp_le[simp] |
90 order.antisymp_le[simp] |
77 preorder.antisymp_greater[simp] |
91 preorder.antisymp_on_greater[simp] |
78 preorder.antisymp_less[simp] |
92 preorder.antisymp_on_less[simp] |
79 preorder.reflp_on_ge[simp] |
93 preorder.reflp_on_ge[simp] |
80 preorder.reflp_on_le[simp] |
94 preorder.reflp_on_le[simp] |
|
95 reflD |
|
96 reflI |
81 reflp_on_conversp[simp] |
97 reflp_on_conversp[simp] |
82 sym_onD |
98 sym_onD |
83 sym_onI |
99 sym_onI |
84 sym_on_subset |
100 sym_on_subset |
85 symp_onD |
101 symp_onD |
86 symp_onI |
102 symp_onI |
|
103 symp_on_conversep[simp] |
87 symp_on_subset |
104 symp_on_subset |
88 symp_on_sym_on_eq[pred_set_conv] |
105 symp_on_sym_on_eq[pred_set_conv] |
89 totalI |
106 totalI |
90 totalp_on_converse[simp] |
107 totalp_on_converse[simp] |
91 totalp_on_singleton[simp] |
108 totalp_on_singleton[simp] |
101 reflp_on_reflclp[simp] |
118 reflp_on_reflclp[simp] |
102 transp_reflclp[simp] |
119 transp_reflclp[simp] |
103 |
120 |
104 * Theory "HOL.Wellfounded": |
121 * Theory "HOL.Wellfounded": |
105 - Added lemmas. |
122 - Added lemmas. |
|
123 asym_lex_prod[simp] |
|
124 asym_on_lex_prod[simp] |
|
125 irrefl_lex_prod[simp] |
|
126 irrefl_on_lex_prod[simp] |
|
127 refl_lex_prod[simp] |
|
128 sym_lex_prod[simp] |
|
129 sym_on_lex_prod[simp] |
106 wfP_if_convertible_to_nat |
130 wfP_if_convertible_to_nat |
107 wfP_if_convertible_to_wfP |
131 wfP_if_convertible_to_wfP |
108 wf_if_convertible_to_wf |
132 wf_if_convertible_to_wf |
109 |
133 |
110 * Theory "HOL-Library.FSet": |
134 * Theory "HOL-Library.FSet": |