src/HOL/Multivariate_Analysis/Euclidean_Space.thy
changeset 40377 0e5d48096f58
parent 39302 d7728f65b353
child 40702 cf26dd7395e4
equal deleted inserted replaced
40367:6fb991dc074b 40377:0e5d48096f58
  1063   shows "h x"
  1063   shows "h x"
  1064 using span_induct_alt'[of h S] h0 hS x by blast
  1064 using span_induct_alt'[of h S] h0 hS x by blast
  1065 
  1065 
  1066 text {* Individual closure properties. *}
  1066 text {* Individual closure properties. *}
  1067 
  1067 
       
  1068 lemma span_span: "span (span A) = span A"
       
  1069   unfolding span_def hull_hull ..
       
  1070 
  1068 lemma (in real_vector) span_superset: "x \<in> S ==> x \<in> span S" by (metis span_clauses(1))
  1071 lemma (in real_vector) span_superset: "x \<in> S ==> x \<in> span S" by (metis span_clauses(1))
  1069 
  1072 
  1070 lemma (in real_vector) span_0: "0 \<in> span S" by (metis subspace_span subspace_0)
  1073 lemma (in real_vector) span_0: "0 \<in> span S" by (metis subspace_span subspace_0)
       
  1074 
       
  1075 lemma span_inc: "S \<subseteq> span S"
       
  1076   by (metis subset_eq span_superset)
  1071 
  1077 
  1072 lemma (in real_vector) dependent_0: assumes "0\<in>A" shows "dependent A"
  1078 lemma (in real_vector) dependent_0: assumes "0\<in>A" shows "dependent A"
  1073   unfolding dependent_def apply(rule_tac x=0 in bexI)
  1079   unfolding dependent_def apply(rule_tac x=0 in bexI)
  1074   using assms span_0 by auto
  1080   using assms span_0 by auto
  1075 
  1081 
  1482 
  1488 
  1483 text {* The degenerate case of the Exchange Lemma. *}
  1489 text {* The degenerate case of the Exchange Lemma. *}
  1484 
  1490 
  1485 lemma mem_delete: "x \<in> (A - {a}) \<longleftrightarrow> x \<noteq> a \<and> x \<in> A"
  1491 lemma mem_delete: "x \<in> (A - {a}) \<longleftrightarrow> x \<noteq> a \<and> x \<in> A"
  1486   by blast
  1492   by blast
  1487 
       
  1488 lemma span_span: "span (span A) = span A"
       
  1489   unfolding span_def hull_hull ..
       
  1490 
       
  1491 lemma span_inc: "S \<subseteq> span S"
       
  1492   by (metis subset_eq span_superset)
       
  1493 
  1493 
  1494 lemma spanning_subset_independent:
  1494 lemma spanning_subset_independent:
  1495   assumes BA: "B \<subseteq> A" and iA: "independent A"
  1495   assumes BA: "B \<subseteq> A" and iA: "independent A"
  1496   and AsB: "A \<subseteq> span B"
  1496   and AsB: "A \<subseteq> span B"
  1497   shows "A = B"
  1497   shows "A = B"