src/HOL/NanoJava/Equivalence.thy
changeset 11497 0e66e0114d9a
parent 11486 8f32860eac3a
child 11507 4b32a46ffd29
equal deleted inserted replaced
11496:fa8d12b789e1 11497:0e66e0114d9a
    66 
    66 
    67 subsection "Soundness"
    67 subsection "Soundness"
    68 
    68 
    69 declare exec_elim_cases [elim!] eval_elim_cases [elim!]
    69 declare exec_elim_cases [elim!] eval_elim_cases [elim!]
    70 
    70 
    71 lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl C m,Q)"
    71 lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl M,Q)"
    72 by (clarsimp simp add: nvalid_def2)
    72 by (clarsimp simp add: nvalid_def2)
    73 
    73 
    74 lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body C m,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl C m,Q)"
    74 lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body M,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl M,Q)"
    75 by (clarsimp simp add: nvalid_def2)
    75 by (clarsimp simp add: nvalid_def2)
    76 
    76 
    77 lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t"
    77 lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t"
    78 by (force simp add: split_paired_all nvalid_def2 intro: exec_mono)
    78 by (force simp add: split_paired_all nvalid_def2 intro: exec_mono)
    79 
    79 
    86 apply (rule_tac "P2.1"="%s e v n t. True" in exec_eval.induct [THEN conjunct1])
    86 apply (rule_tac "P2.1"="%s e v n t. True" in exec_eval.induct [THEN conjunct1])
    87 apply clarsimp+
    87 apply clarsimp+
    88 done
    88 done
    89 
    89 
    90 lemma Impl_sound_lemma: 
    90 lemma Impl_sound_lemma: 
    91 "\<lbrakk>\<forall>n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (\<Union>z. split (f z) ` ms) (nvalid n);
    91 "\<lbrakk>\<forall>z n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (f z ` Ms) (nvalid n); 
    92           (C, m) \<in> ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z C m)"
    92 M\<in>Ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z M)"
    93 by blast
    93 by blast
    94 
    94 
    95 lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l"
    95 lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l"
    96 by fast
    96 by fast
    97 
    97 
   122 apply fast
   122 apply fast
   123 apply (clarsimp del: Meth_elim_cases) (* Call *)
   123 apply (clarsimp del: Meth_elim_cases) (* Call *)
   124 apply (tactic "smp_tac 1 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1")
   124 apply (tactic "smp_tac 1 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1")
   125 apply (tactic "smp_tac 2 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1")
   125 apply (tactic "smp_tac 2 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1")
   126 apply (tactic "smp_tac 4 1", tactic "smp_tac 2 1", fast)
   126 apply (tactic "smp_tac 4 1", tactic "smp_tac 2 1", fast)
   127 apply (clarsimp del: Impl_elim_cases) (* Meth *)
   127 apply (force del: Impl_elim_cases) (* Meth *)
   128 defer
   128 defer
   129 prefer 4 apply blast (*  Conseq *)
   129 prefer 4 apply blast (*  Conseq *)
   130 prefer 4 apply blast (* eConseq *)
   130 prefer 4 apply blast (* eConseq *)
   131 apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def)
   131 apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def)
   132 apply blast
   132 apply blast
   133 apply blast
   133 apply blast
   134 apply blast
   134 apply blast
   135 (* Impl *)
   135 (* Impl *)
   136 apply (rule allI)
   136 apply (rule allI)
       
   137 apply (rule_tac x=z in spec)
   137 apply (induct_tac "n")
   138 apply (induct_tac "n")
   138 apply  (clarify intro!: Impl_nvalid_0)
   139 apply  (clarify intro!: Impl_nvalid_0)
   139 apply (clarify  intro!: Impl_nvalid_Suc)
   140 apply (clarify  intro!: Impl_nvalid_Suc)
   140 apply (drule nvalids_SucD)
   141 apply (drule nvalids_SucD)
       
   142 apply (simp only: all_simps)
   141 apply (erule (1) impE)
   143 apply (erule (1) impE)
   142 apply (drule (4) Impl_sound_lemma)
   144 apply (drule (2) Impl_sound_lemma)
       
   145 apply  blast
       
   146 apply assumption
   143 done
   147 done
   144 
   148 
   145 theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}"
   149 theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}"
   146 apply (simp only: valid_def2)
   150 apply (simp only: valid_def2)
   147 apply (drule hoare_sound_main [THEN conjunct1, rule_format])
   151 apply (drule hoare_sound_main [THEN conjunct1, rule_format])
   202 apply clarsimp
   206 apply clarsimp
   203 apply (drule (1) exec_exec_max)
   207 apply (drule (1) exec_exec_max)
   204 apply (blast del: exec_elim_cases)
   208 apply (blast del: exec_elim_cases)
   205 done
   209 done
   206 
   210 
   207 lemma MGF_lemma: "\<forall>C m z. A |\<turnstile> {MGT (Impl C m) z} \<Longrightarrow> 
   211 lemma MGF_lemma: "\<forall>M z. A |\<turnstile> {MGT (Impl M) z} \<Longrightarrow> 
   208  (\<forall>z. A |\<turnstile> {MGT c z}) \<and> (\<forall>z. A |\<turnstile>\<^sub>e MGT\<^sub>e e z)"
   212  (\<forall>z. A |\<turnstile> {MGT c z}) \<and> (\<forall>z. A |\<turnstile>\<^sub>e MGT\<^sub>e e z)"
   209 apply (simp add: MGT_def MGTe_def)
   213 apply (simp add: MGT_def MGTe_def)
   210 apply (rule stmt_expr.induct)
   214 apply (rule stmt_expr.induct)
   211 apply (rule_tac [!] allI)
   215 apply (rule_tac [!] allI)
   212 
   216 
   248 apply (rule hoare_ehoare.Meth)
   252 apply (rule hoare_ehoare.Meth)
   249 apply (rule allI)
   253 apply (rule allI)
   250 apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
   254 apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
   251 apply blast
   255 apply blast
   252 
   256 
   253 apply blast
   257 apply (simp add: split_paired_all)
   254 
   258 
   255 apply (rule eConseq1 [OF hoare_ehoare.NewC])
   259 apply (rule eConseq1 [OF hoare_ehoare.NewC])
   256 apply blast
   260 apply blast
   257 
   261 
   258 apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast])
   262 apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast])
   279 apply (clarsimp del: Impl_elim_cases)
   283 apply (clarsimp del: Impl_elim_cases)
   280 apply (drule (2) eval_eval_exec_max)
   284 apply (drule (2) eval_eval_exec_max)
   281 apply (fast del: Impl_elim_cases)
   285 apply (fast del: Impl_elim_cases)
   282 done
   286 done
   283 
   287 
   284 lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl C m) z}"
   288 lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl M) z}"
   285 apply (unfold MGT_def)
   289 apply (unfold MGT_def)
   286 apply (rule Impl1)
   290 apply (rule Impl1)
   287 apply  (rule_tac [2] UNIV_I)
   291 apply  (rule_tac [2] UNIV_I)
   288 apply clarsimp
   292 apply clarsimp
   289 apply (rule hoare_ehoare.ConjI)
   293 apply (rule hoare_ehoare.ConjI)