equal
deleted
inserted
replaced
108 apply (rule M_trivial_axioms.intro) |
108 apply (rule M_trivial_axioms.intro) |
109 apply (rule upair_ax) |
109 apply (rule upair_ax) |
110 apply (rule Union_ax) |
110 apply (rule Union_ax) |
111 done |
111 done |
112 |
112 |
113 interpretation L?: M_trivial L by (rule M_trivial_L) |
113 interpretation L: M_trivial L by (rule M_trivial_L) |
114 |
114 |
115 (* Replaces the following declarations... |
115 (* Replaces the following declarations... |
116 lemmas rall_abs = M_trivial.rall_abs [OF M_trivial_L] |
116 lemmas rall_abs = M_trivial.rall_abs [OF M_trivial_L] |
117 and rex_abs = M_trivial.rex_abs [OF M_trivial_L] |
117 and rex_abs = M_trivial.rex_abs [OF M_trivial_L] |
118 ... |
118 ... |