doc-src/AxClass/Group/Group.thy
changeset 10309 a7f961fb62c6
parent 10223 31346d22bb54
child 11071 4e542a09b582
equal deleted inserted replaced
10308:c50fc8023ac0 10309:a7f961fb62c6
   180    \end{center}
   180    \end{center}
   181  \end{figure}
   181  \end{figure}
   182 *}
   182 *}
   183 
   183 
   184 instance monoid < semigroup
   184 instance monoid < semigroup
   185 proof intro_classes
   185 proof
   186   fix x y z :: "'a\<Colon>monoid"
   186   fix x y z :: "'a\<Colon>monoid"
   187   show "x \<odot> y \<odot> z = x \<odot> (y \<odot> z)"
   187   show "x \<odot> y \<odot> z = x \<odot> (y \<odot> z)"
   188     by (rule monoid.assoc)
   188     by (rule monoid.assoc)
   189 qed
   189 qed
   190 
   190 
   191 instance group < monoid
   191 instance group < monoid
   192 proof intro_classes
   192 proof
   193   fix x y z :: "'a\<Colon>group"
   193   fix x y z :: "'a\<Colon>group"
   194   show "x \<odot> y \<odot> z = x \<odot> (y \<odot> z)"
   194   show "x \<odot> y \<odot> z = x \<odot> (y \<odot> z)"
   195     by (rule semigroup.assoc)
   195     by (rule semigroup.assoc)
   196   show "\<unit> \<odot> x = x"
   196   show "\<unit> \<odot> x = x"
   197     by (rule group.left_unit)
   197     by (rule group.left_unit)
   201 
   201 
   202 text {*
   202 text {*
   203  \medskip The $\INSTANCE$ command sets up an appropriate goal that
   203  \medskip The $\INSTANCE$ command sets up an appropriate goal that
   204  represents the class inclusion (or type arity, see
   204  represents the class inclusion (or type arity, see
   205  \secref{sec:inst-arity}) to be proven (see also
   205  \secref{sec:inst-arity}) to be proven (see also
   206  \cite{isabelle-isar-ref}).  The @{text intro_classes} proof method
   206  \cite{isabelle-isar-ref}).  The initial proof step causes
   207  does back-chaining of class membership statements wrt.\ the hierarchy
   207  back-chaining of class membership statements wrt.\ the hierarchy of
   208  of any classes defined in the current theory; the effect is to reduce
   208  any classes defined in the current theory; the effect is to reduce to
   209  to the initial statement to a number of goals that directly
   209  the initial statement to a number of goals that directly correspond
   210  correspond to any class axioms encountered on the path upwards
   210  to any class axioms encountered on the path upwards through the class
   211  through the class hierarchy.
   211  hierarchy.
   212 *}
   212 *}
   213 
   213 
   214 
   214 
   215 subsection {* Concrete instantiation \label{sec:inst-arity} *}
   215 subsection {* Concrete instantiation \label{sec:inst-arity} *}
   216 
   216