equal
deleted
inserted
replaced
1872 simp del: norm_scaleR |
1872 simp del: norm_scaleR |
1873 split: split_indicator) |
1873 split: split_indicator) |
1874 qed |
1874 qed |
1875 qed |
1875 qed |
1876 qed (simp add: integrable_restrict_space) |
1876 qed (simp add: integrable_restrict_space) |
|
1877 |
|
1878 lemma integral_empty: |
|
1879 assumes "space M = {}" |
|
1880 shows "integral\<^sup>L M f = 0" |
|
1881 proof - |
|
1882 have "(\<integral> x. f x \<partial>M) = (\<integral> x. 0 \<partial>M)" |
|
1883 by(rule integral_cong)(simp_all add: assms) |
|
1884 thus ?thesis by simp |
|
1885 qed |
1877 |
1886 |
1878 subsection {* Measure spaces with an associated density *} |
1887 subsection {* Measure spaces with an associated density *} |
1879 |
1888 |
1880 lemma integrable_density: |
1889 lemma integrable_density: |
1881 fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" and g :: "'a \<Rightarrow> real" |
1890 fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" and g :: "'a \<Rightarrow> real" |