src/HOL/Complex.thy
changeset 28952 15a4b2cf8c34
parent 28944 e27abf0db984
child 29233 ce6d35a0bed6
equal deleted inserted replaced
28948:1860f016886d 28952:15a4b2cf8c34
       
     1 (*  Title:       Complex.thy
       
     2     Author:      Jacques D. Fleuriot
       
     3     Copyright:   2001 University of Edinburgh
       
     4     Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
       
     5 *)
       
     6 
       
     7 header {* Complex Numbers: Rectangular and Polar Representations *}
       
     8 
       
     9 theory Complex
       
    10 imports Transcendental
       
    11 begin
       
    12 
       
    13 datatype complex = Complex real real
       
    14 
       
    15 primrec
       
    16   Re :: "complex \<Rightarrow> real"
       
    17 where
       
    18   Re: "Re (Complex x y) = x"
       
    19 
       
    20 primrec
       
    21   Im :: "complex \<Rightarrow> real"
       
    22 where
       
    23   Im: "Im (Complex x y) = y"
       
    24 
       
    25 lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
       
    26   by (induct z) simp
       
    27 
       
    28 lemma complex_equality [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
       
    29   by (induct x, induct y) simp
       
    30 
       
    31 lemma expand_complex_eq: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
       
    32   by (induct x, induct y) simp
       
    33 
       
    34 lemmas complex_Re_Im_cancel_iff = expand_complex_eq
       
    35 
       
    36 
       
    37 subsection {* Addition and Subtraction *}
       
    38 
       
    39 instantiation complex :: ab_group_add
       
    40 begin
       
    41 
       
    42 definition
       
    43   complex_zero_def: "0 = Complex 0 0"
       
    44 
       
    45 definition
       
    46   complex_add_def: "x + y = Complex (Re x + Re y) (Im x + Im y)"
       
    47 
       
    48 definition
       
    49   complex_minus_def: "- x = Complex (- Re x) (- Im x)"
       
    50 
       
    51 definition
       
    52   complex_diff_def: "x - (y\<Colon>complex) = x + - y"
       
    53 
       
    54 lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
       
    55   by (simp add: complex_zero_def)
       
    56 
       
    57 lemma complex_Re_zero [simp]: "Re 0 = 0"
       
    58   by (simp add: complex_zero_def)
       
    59 
       
    60 lemma complex_Im_zero [simp]: "Im 0 = 0"
       
    61   by (simp add: complex_zero_def)
       
    62 
       
    63 lemma complex_add [simp]:
       
    64   "Complex a b + Complex c d = Complex (a + c) (b + d)"
       
    65   by (simp add: complex_add_def)
       
    66 
       
    67 lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
       
    68   by (simp add: complex_add_def)
       
    69 
       
    70 lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
       
    71   by (simp add: complex_add_def)
       
    72 
       
    73 lemma complex_minus [simp]:
       
    74   "- (Complex a b) = Complex (- a) (- b)"
       
    75   by (simp add: complex_minus_def)
       
    76 
       
    77 lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
       
    78   by (simp add: complex_minus_def)
       
    79 
       
    80 lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
       
    81   by (simp add: complex_minus_def)
       
    82 
       
    83 lemma complex_diff [simp]:
       
    84   "Complex a b - Complex c d = Complex (a - c) (b - d)"
       
    85   by (simp add: complex_diff_def)
       
    86 
       
    87 lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
       
    88   by (simp add: complex_diff_def)
       
    89 
       
    90 lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
       
    91   by (simp add: complex_diff_def)
       
    92 
       
    93 instance
       
    94   by intro_classes (simp_all add: complex_add_def complex_diff_def)
       
    95 
       
    96 end
       
    97 
       
    98 
       
    99 
       
   100 subsection {* Multiplication and Division *}
       
   101 
       
   102 instantiation complex :: "{field, division_by_zero}"
       
   103 begin
       
   104 
       
   105 definition
       
   106   complex_one_def: "1 = Complex 1 0"
       
   107 
       
   108 definition
       
   109   complex_mult_def: "x * y =
       
   110     Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
       
   111 
       
   112 definition
       
   113   complex_inverse_def: "inverse x =
       
   114     Complex (Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)) (- Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>))"
       
   115 
       
   116 definition
       
   117   complex_divide_def: "x / (y\<Colon>complex) = x * inverse y"
       
   118 
       
   119 lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \<and> b = 0)"
       
   120   by (simp add: complex_one_def)
       
   121 
       
   122 lemma complex_Re_one [simp]: "Re 1 = 1"
       
   123   by (simp add: complex_one_def)
       
   124 
       
   125 lemma complex_Im_one [simp]: "Im 1 = 0"
       
   126   by (simp add: complex_one_def)
       
   127 
       
   128 lemma complex_mult [simp]:
       
   129   "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
       
   130   by (simp add: complex_mult_def)
       
   131 
       
   132 lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
       
   133   by (simp add: complex_mult_def)
       
   134 
       
   135 lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
       
   136   by (simp add: complex_mult_def)
       
   137 
       
   138 lemma complex_inverse [simp]:
       
   139   "inverse (Complex a b) = Complex (a / (a\<twosuperior> + b\<twosuperior>)) (- b / (a\<twosuperior> + b\<twosuperior>))"
       
   140   by (simp add: complex_inverse_def)
       
   141 
       
   142 lemma complex_Re_inverse:
       
   143   "Re (inverse x) = Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
       
   144   by (simp add: complex_inverse_def)
       
   145 
       
   146 lemma complex_Im_inverse:
       
   147   "Im (inverse x) = - Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
       
   148   by (simp add: complex_inverse_def)
       
   149 
       
   150 instance
       
   151   by intro_classes (simp_all add: complex_mult_def
       
   152   right_distrib left_distrib right_diff_distrib left_diff_distrib
       
   153   complex_inverse_def complex_divide_def
       
   154   power2_eq_square add_divide_distrib [symmetric]
       
   155   expand_complex_eq)
       
   156 
       
   157 end
       
   158 
       
   159 
       
   160 subsection {* Exponentiation *}
       
   161 
       
   162 instantiation complex :: recpower
       
   163 begin
       
   164 
       
   165 primrec power_complex where
       
   166   complexpow_0:     "z ^ 0     = (1\<Colon>complex)"
       
   167   | complexpow_Suc: "z ^ Suc n = (z\<Colon>complex) * z ^ n"
       
   168 
       
   169 instance by intro_classes simp_all
       
   170 
       
   171 end
       
   172 
       
   173 
       
   174 subsection {* Numerals and Arithmetic *}
       
   175 
       
   176 instantiation complex :: number_ring
       
   177 begin
       
   178 
       
   179 definition number_of_complex where
       
   180   complex_number_of_def: "number_of w = (of_int w \<Colon> complex)"
       
   181 
       
   182 instance
       
   183   by intro_classes (simp only: complex_number_of_def)
       
   184 
       
   185 end
       
   186 
       
   187 lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
       
   188 by (induct n) simp_all
       
   189 
       
   190 lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
       
   191 by (induct n) simp_all
       
   192 
       
   193 lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
       
   194 by (cases z rule: int_diff_cases) simp
       
   195 
       
   196 lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
       
   197 by (cases z rule: int_diff_cases) simp
       
   198 
       
   199 lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v"
       
   200 unfolding number_of_eq by (rule complex_Re_of_int)
       
   201 
       
   202 lemma complex_Im_number_of [simp]: "Im (number_of v) = 0"
       
   203 unfolding number_of_eq by (rule complex_Im_of_int)
       
   204 
       
   205 lemma Complex_eq_number_of [simp]:
       
   206   "(Complex a b = number_of w) = (a = number_of w \<and> b = 0)"
       
   207 by (simp add: expand_complex_eq)
       
   208 
       
   209 
       
   210 subsection {* Scalar Multiplication *}
       
   211 
       
   212 instantiation complex :: real_field
       
   213 begin
       
   214 
       
   215 definition
       
   216   complex_scaleR_def: "scaleR r x = Complex (r * Re x) (r * Im x)"
       
   217 
       
   218 lemma complex_scaleR [simp]:
       
   219   "scaleR r (Complex a b) = Complex (r * a) (r * b)"
       
   220   unfolding complex_scaleR_def by simp
       
   221 
       
   222 lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
       
   223   unfolding complex_scaleR_def by simp
       
   224 
       
   225 lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
       
   226   unfolding complex_scaleR_def by simp
       
   227 
       
   228 instance
       
   229 proof
       
   230   fix a b :: real and x y :: complex
       
   231   show "scaleR a (x + y) = scaleR a x + scaleR a y"
       
   232     by (simp add: expand_complex_eq right_distrib)
       
   233   show "scaleR (a + b) x = scaleR a x + scaleR b x"
       
   234     by (simp add: expand_complex_eq left_distrib)
       
   235   show "scaleR a (scaleR b x) = scaleR (a * b) x"
       
   236     by (simp add: expand_complex_eq mult_assoc)
       
   237   show "scaleR 1 x = x"
       
   238     by (simp add: expand_complex_eq)
       
   239   show "scaleR a x * y = scaleR a (x * y)"
       
   240     by (simp add: expand_complex_eq ring_simps)
       
   241   show "x * scaleR a y = scaleR a (x * y)"
       
   242     by (simp add: expand_complex_eq ring_simps)
       
   243 qed
       
   244 
       
   245 end
       
   246 
       
   247 
       
   248 subsection{* Properties of Embedding from Reals *}
       
   249 
       
   250 abbreviation
       
   251   complex_of_real :: "real \<Rightarrow> complex" where
       
   252     "complex_of_real \<equiv> of_real"
       
   253 
       
   254 lemma complex_of_real_def: "complex_of_real r = Complex r 0"
       
   255 by (simp add: of_real_def complex_scaleR_def)
       
   256 
       
   257 lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
       
   258 by (simp add: complex_of_real_def)
       
   259 
       
   260 lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
       
   261 by (simp add: complex_of_real_def)
       
   262 
       
   263 lemma Complex_add_complex_of_real [simp]:
       
   264      "Complex x y + complex_of_real r = Complex (x+r) y"
       
   265 by (simp add: complex_of_real_def)
       
   266 
       
   267 lemma complex_of_real_add_Complex [simp]:
       
   268      "complex_of_real r + Complex x y = Complex (r+x) y"
       
   269 by (simp add: complex_of_real_def)
       
   270 
       
   271 lemma Complex_mult_complex_of_real:
       
   272      "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
       
   273 by (simp add: complex_of_real_def)
       
   274 
       
   275 lemma complex_of_real_mult_Complex:
       
   276      "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
       
   277 by (simp add: complex_of_real_def)
       
   278 
       
   279 
       
   280 subsection {* Vector Norm *}
       
   281 
       
   282 instantiation complex :: real_normed_field
       
   283 begin
       
   284 
       
   285 definition
       
   286   complex_norm_def: "norm z = sqrt ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
       
   287 
       
   288 abbreviation
       
   289   cmod :: "complex \<Rightarrow> real" where
       
   290   "cmod \<equiv> norm"
       
   291 
       
   292 definition
       
   293   complex_sgn_def: "sgn x = x /\<^sub>R cmod x"
       
   294 
       
   295 lemmas cmod_def = complex_norm_def
       
   296 
       
   297 lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<twosuperior> + y\<twosuperior>)"
       
   298   by (simp add: complex_norm_def)
       
   299 
       
   300 instance
       
   301 proof
       
   302   fix r :: real and x y :: complex
       
   303   show "0 \<le> norm x"
       
   304     by (induct x) simp
       
   305   show "(norm x = 0) = (x = 0)"
       
   306     by (induct x) simp
       
   307   show "norm (x + y) \<le> norm x + norm y"
       
   308     by (induct x, induct y)
       
   309        (simp add: real_sqrt_sum_squares_triangle_ineq)
       
   310   show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
       
   311     by (induct x)
       
   312        (simp add: power_mult_distrib right_distrib [symmetric] real_sqrt_mult)
       
   313   show "norm (x * y) = norm x * norm y"
       
   314     by (induct x, induct y)
       
   315        (simp add: real_sqrt_mult [symmetric] power2_eq_square ring_simps)
       
   316   show "sgn x = x /\<^sub>R cmod x" by(simp add: complex_sgn_def)
       
   317 qed
       
   318 
       
   319 end
       
   320 
       
   321 lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1"
       
   322 by simp
       
   323 
       
   324 lemma cmod_complex_polar [simp]:
       
   325      "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
       
   326 by (simp add: norm_mult)
       
   327 
       
   328 lemma complex_Re_le_cmod: "Re x \<le> cmod x"
       
   329 unfolding complex_norm_def
       
   330 by (rule real_sqrt_sum_squares_ge1)
       
   331 
       
   332 lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x"
       
   333 by (rule order_trans [OF _ norm_ge_zero], simp)
       
   334 
       
   335 lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a"
       
   336 by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
       
   337 
       
   338 lemmas real_sum_squared_expand = power2_sum [where 'a=real]
       
   339 
       
   340 lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
       
   341 by (cases x) simp
       
   342 
       
   343 lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
       
   344 by (cases x) simp
       
   345 
       
   346 subsection {* Completeness of the Complexes *}
       
   347 
       
   348 interpretation Re: bounded_linear ["Re"]
       
   349 apply (unfold_locales, simp, simp)
       
   350 apply (rule_tac x=1 in exI)
       
   351 apply (simp add: complex_norm_def)
       
   352 done
       
   353 
       
   354 interpretation Im: bounded_linear ["Im"]
       
   355 apply (unfold_locales, simp, simp)
       
   356 apply (rule_tac x=1 in exI)
       
   357 apply (simp add: complex_norm_def)
       
   358 done
       
   359 
       
   360 lemma LIMSEQ_Complex:
       
   361   "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
       
   362 apply (rule LIMSEQ_I)
       
   363 apply (subgoal_tac "0 < r / sqrt 2")
       
   364 apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
       
   365 apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
       
   366 apply (rename_tac M N, rule_tac x="max M N" in exI, safe)
       
   367 apply (simp add: real_sqrt_sum_squares_less)
       
   368 apply (simp add: divide_pos_pos)
       
   369 done
       
   370 
       
   371 instance complex :: banach
       
   372 proof
       
   373   fix X :: "nat \<Rightarrow> complex"
       
   374   assume X: "Cauchy X"
       
   375   from Re.Cauchy [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
       
   376     by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
       
   377   from Im.Cauchy [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
       
   378     by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
       
   379   have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
       
   380     using LIMSEQ_Complex [OF 1 2] by simp
       
   381   thus "convergent X"
       
   382     by (rule convergentI)
       
   383 qed
       
   384 
       
   385 
       
   386 subsection {* The Complex Number @{term "\<i>"} *}
       
   387 
       
   388 definition
       
   389   "ii" :: complex  ("\<i>") where
       
   390   i_def: "ii \<equiv> Complex 0 1"
       
   391 
       
   392 lemma complex_Re_i [simp]: "Re ii = 0"
       
   393 by (simp add: i_def)
       
   394 
       
   395 lemma complex_Im_i [simp]: "Im ii = 1"
       
   396 by (simp add: i_def)
       
   397 
       
   398 lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
       
   399 by (simp add: i_def)
       
   400 
       
   401 lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
       
   402 by (simp add: expand_complex_eq)
       
   403 
       
   404 lemma complex_i_not_one [simp]: "ii \<noteq> 1"
       
   405 by (simp add: expand_complex_eq)
       
   406 
       
   407 lemma complex_i_not_number_of [simp]: "ii \<noteq> number_of w"
       
   408 by (simp add: expand_complex_eq)
       
   409 
       
   410 lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
       
   411 by (simp add: expand_complex_eq)
       
   412 
       
   413 lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
       
   414 by (simp add: expand_complex_eq)
       
   415 
       
   416 lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
       
   417 by (simp add: i_def complex_of_real_def)
       
   418 
       
   419 lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
       
   420 by (simp add: i_def complex_of_real_def)
       
   421 
       
   422 lemma i_squared [simp]: "ii * ii = -1"
       
   423 by (simp add: i_def)
       
   424 
       
   425 lemma power2_i [simp]: "ii\<twosuperior> = -1"
       
   426 by (simp add: power2_eq_square)
       
   427 
       
   428 lemma inverse_i [simp]: "inverse ii = - ii"
       
   429 by (rule inverse_unique, simp)
       
   430 
       
   431 
       
   432 subsection {* Complex Conjugation *}
       
   433 
       
   434 definition
       
   435   cnj :: "complex \<Rightarrow> complex" where
       
   436   "cnj z = Complex (Re z) (- Im z)"
       
   437 
       
   438 lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
       
   439 by (simp add: cnj_def)
       
   440 
       
   441 lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
       
   442 by (simp add: cnj_def)
       
   443 
       
   444 lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
       
   445 by (simp add: cnj_def)
       
   446 
       
   447 lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
       
   448 by (simp add: expand_complex_eq)
       
   449 
       
   450 lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
       
   451 by (simp add: cnj_def)
       
   452 
       
   453 lemma complex_cnj_zero [simp]: "cnj 0 = 0"
       
   454 by (simp add: expand_complex_eq)
       
   455 
       
   456 lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
       
   457 by (simp add: expand_complex_eq)
       
   458 
       
   459 lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
       
   460 by (simp add: expand_complex_eq)
       
   461 
       
   462 lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
       
   463 by (simp add: expand_complex_eq)
       
   464 
       
   465 lemma complex_cnj_minus: "cnj (- x) = - cnj x"
       
   466 by (simp add: expand_complex_eq)
       
   467 
       
   468 lemma complex_cnj_one [simp]: "cnj 1 = 1"
       
   469 by (simp add: expand_complex_eq)
       
   470 
       
   471 lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
       
   472 by (simp add: expand_complex_eq)
       
   473 
       
   474 lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
       
   475 by (simp add: complex_inverse_def)
       
   476 
       
   477 lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
       
   478 by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
       
   479 
       
   480 lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
       
   481 by (induct n, simp_all add: complex_cnj_mult)
       
   482 
       
   483 lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
       
   484 by (simp add: expand_complex_eq)
       
   485 
       
   486 lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
       
   487 by (simp add: expand_complex_eq)
       
   488 
       
   489 lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w"
       
   490 by (simp add: expand_complex_eq)
       
   491 
       
   492 lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
       
   493 by (simp add: expand_complex_eq)
       
   494 
       
   495 lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
       
   496 by (simp add: complex_norm_def)
       
   497 
       
   498 lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
       
   499 by (simp add: expand_complex_eq)
       
   500 
       
   501 lemma complex_cnj_i [simp]: "cnj ii = - ii"
       
   502 by (simp add: expand_complex_eq)
       
   503 
       
   504 lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
       
   505 by (simp add: expand_complex_eq)
       
   506 
       
   507 lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
       
   508 by (simp add: expand_complex_eq)
       
   509 
       
   510 lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
       
   511 by (simp add: expand_complex_eq power2_eq_square)
       
   512 
       
   513 lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<twosuperior>"
       
   514 by (simp add: norm_mult power2_eq_square)
       
   515 
       
   516 interpretation cnj: bounded_linear ["cnj"]
       
   517 apply (unfold_locales)
       
   518 apply (rule complex_cnj_add)
       
   519 apply (rule complex_cnj_scaleR)
       
   520 apply (rule_tac x=1 in exI, simp)
       
   521 done
       
   522 
       
   523 
       
   524 subsection{*The Functions @{term sgn} and @{term arg}*}
       
   525 
       
   526 text {*------------ Argand -------------*}
       
   527 
       
   528 definition
       
   529   arg :: "complex => real" where
       
   530   "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
       
   531 
       
   532 lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
       
   533 by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute)
       
   534 
       
   535 lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
       
   536 by (simp add: i_def complex_of_real_def)
       
   537 
       
   538 lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)"
       
   539 by (simp add: i_def complex_one_def)
       
   540 
       
   541 lemma complex_eq_cancel_iff2 [simp]:
       
   542      "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
       
   543 by (simp add: complex_of_real_def)
       
   544 
       
   545 lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
       
   546 by (simp add: complex_sgn_def divide_inverse)
       
   547 
       
   548 lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
       
   549 by (simp add: complex_sgn_def divide_inverse)
       
   550 
       
   551 lemma complex_inverse_complex_split:
       
   552      "inverse(complex_of_real x + ii * complex_of_real y) =
       
   553       complex_of_real(x/(x ^ 2 + y ^ 2)) -
       
   554       ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
       
   555 by (simp add: complex_of_real_def i_def diff_minus divide_inverse)
       
   556 
       
   557 (*----------------------------------------------------------------------------*)
       
   558 (* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
       
   559 (* many of the theorems are not used - so should they be kept?                *)
       
   560 (*----------------------------------------------------------------------------*)
       
   561 
       
   562 lemma cos_arg_i_mult_zero_pos:
       
   563    "0 < y ==> cos (arg(Complex 0 y)) = 0"
       
   564 apply (simp add: arg_def abs_if)
       
   565 apply (rule_tac a = "pi/2" in someI2, auto)
       
   566 apply (rule order_less_trans [of _ 0], auto)
       
   567 done
       
   568 
       
   569 lemma cos_arg_i_mult_zero_neg:
       
   570    "y < 0 ==> cos (arg(Complex 0 y)) = 0"
       
   571 apply (simp add: arg_def abs_if)
       
   572 apply (rule_tac a = "- pi/2" in someI2, auto)
       
   573 apply (rule order_trans [of _ 0], auto)
       
   574 done
       
   575 
       
   576 lemma cos_arg_i_mult_zero [simp]:
       
   577      "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
       
   578 by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg)
       
   579 
       
   580 
       
   581 subsection{*Finally! Polar Form for Complex Numbers*}
       
   582 
       
   583 definition
       
   584 
       
   585   (* abbreviation for (cos a + i sin a) *)
       
   586   cis :: "real => complex" where
       
   587   "cis a = Complex (cos a) (sin a)"
       
   588 
       
   589 definition
       
   590   (* abbreviation for r*(cos a + i sin a) *)
       
   591   rcis :: "[real, real] => complex" where
       
   592   "rcis r a = complex_of_real r * cis a"
       
   593 
       
   594 definition
       
   595   (* e ^ (x + iy) *)
       
   596   expi :: "complex => complex" where
       
   597   "expi z = complex_of_real(exp (Re z)) * cis (Im z)"
       
   598 
       
   599 lemma complex_split_polar:
       
   600      "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
       
   601 apply (induct z)
       
   602 apply (auto simp add: polar_Ex complex_of_real_mult_Complex)
       
   603 done
       
   604 
       
   605 lemma rcis_Ex: "\<exists>r a. z = rcis r a"
       
   606 apply (induct z)
       
   607 apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex)
       
   608 done
       
   609 
       
   610 lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
       
   611 by (simp add: rcis_def cis_def)
       
   612 
       
   613 lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
       
   614 by (simp add: rcis_def cis_def)
       
   615 
       
   616 lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>"
       
   617 proof -
       
   618   have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)"
       
   619     by (simp only: power_mult_distrib right_distrib)
       
   620   thus ?thesis by simp
       
   621 qed
       
   622 
       
   623 lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
       
   624 by (simp add: rcis_def cis_def sin_cos_squared_add2_mult)
       
   625 
       
   626 lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
       
   627 by (simp add: cmod_def power2_eq_square)
       
   628 
       
   629 lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
       
   630 by simp
       
   631 
       
   632 
       
   633 (*---------------------------------------------------------------------------*)
       
   634 (*  (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b)                      *)
       
   635 (*---------------------------------------------------------------------------*)
       
   636 
       
   637 lemma cis_rcis_eq: "cis a = rcis 1 a"
       
   638 by (simp add: rcis_def)
       
   639 
       
   640 lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
       
   641 by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib
       
   642               complex_of_real_def)
       
   643 
       
   644 lemma cis_mult: "cis a * cis b = cis (a + b)"
       
   645 by (simp add: cis_rcis_eq rcis_mult)
       
   646 
       
   647 lemma cis_zero [simp]: "cis 0 = 1"
       
   648 by (simp add: cis_def complex_one_def)
       
   649 
       
   650 lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
       
   651 by (simp add: rcis_def)
       
   652 
       
   653 lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
       
   654 by (simp add: rcis_def)
       
   655 
       
   656 lemma complex_of_real_minus_one:
       
   657    "complex_of_real (-(1::real)) = -(1::complex)"
       
   658 by (simp add: complex_of_real_def complex_one_def)
       
   659 
       
   660 lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
       
   661 by (simp add: mult_assoc [symmetric])
       
   662 
       
   663 
       
   664 lemma cis_real_of_nat_Suc_mult:
       
   665    "cis (real (Suc n) * a) = cis a * cis (real n * a)"
       
   666 by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib)
       
   667 
       
   668 lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
       
   669 apply (induct_tac "n")
       
   670 apply (auto simp add: cis_real_of_nat_Suc_mult)
       
   671 done
       
   672 
       
   673 lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
       
   674 by (simp add: rcis_def power_mult_distrib DeMoivre)
       
   675 
       
   676 lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
       
   677 by (simp add: cis_def complex_inverse_complex_split diff_minus)
       
   678 
       
   679 lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
       
   680 by (simp add: divide_inverse rcis_def)
       
   681 
       
   682 lemma cis_divide: "cis a / cis b = cis (a - b)"
       
   683 by (simp add: complex_divide_def cis_mult real_diff_def)
       
   684 
       
   685 lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
       
   686 apply (simp add: complex_divide_def)
       
   687 apply (case_tac "r2=0", simp)
       
   688 apply (simp add: rcis_inverse rcis_mult real_diff_def)
       
   689 done
       
   690 
       
   691 lemma Re_cis [simp]: "Re(cis a) = cos a"
       
   692 by (simp add: cis_def)
       
   693 
       
   694 lemma Im_cis [simp]: "Im(cis a) = sin a"
       
   695 by (simp add: cis_def)
       
   696 
       
   697 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
       
   698 by (auto simp add: DeMoivre)
       
   699 
       
   700 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
       
   701 by (auto simp add: DeMoivre)
       
   702 
       
   703 lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
       
   704 by (simp add: expi_def exp_add cis_mult [symmetric] mult_ac)
       
   705 
       
   706 lemma expi_zero [simp]: "expi (0::complex) = 1"
       
   707 by (simp add: expi_def)
       
   708 
       
   709 lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
       
   710 apply (insert rcis_Ex [of z])
       
   711 apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
       
   712 apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
       
   713 done
       
   714 
       
   715 lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
       
   716 by (simp add: expi_def cis_def)
       
   717 
       
   718 end