src/HOL/Complex/ex/mirtac.ML
changeset 28952 15a4b2cf8c34
parent 28948 1860f016886d
child 28953 48cd567f6940
equal deleted inserted replaced
28948:1860f016886d 28952:15a4b2cf8c34
     1 (*  Title:      HOL/Complex/ex/mirtac.ML
       
     2     ID:         $Id$
       
     3     Author:     Amine Chaieb, TU Muenchen
       
     4 *)
       
     5 
       
     6 structure MirTac =
       
     7 struct
       
     8 
       
     9 val trace = ref false;
       
    10 fun trace_msg s = if !trace then tracing s else ();
       
    11 
       
    12 val mir_ss = 
       
    13 let val ths = map thm ["real_of_int_inject", "real_of_int_less_iff", "real_of_int_le_iff"]
       
    14 in @{simpset} delsimps ths addsimps (map (fn th => th RS sym) ths)
       
    15 end;
       
    16 
       
    17 val nT = HOLogic.natT;
       
    18   val nat_arith = map thm ["add_nat_number_of", "diff_nat_number_of", 
       
    19                        "mult_nat_number_of", "eq_nat_number_of", "less_nat_number_of"];
       
    20 
       
    21   val comp_arith = (map thm ["Let_def", "if_False", "if_True", "add_0", 
       
    22                  "add_Suc", "add_number_of_left", "mult_number_of_left", 
       
    23                  "Suc_eq_add_numeral_1"])@
       
    24                  (map (fn s => thm s RS sym) ["numeral_1_eq_1", "numeral_0_eq_0"])
       
    25                  @ @{thms arith_simps} @ nat_arith @ @{thms rel_simps} 
       
    26   val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"}, 
       
    27              @{thm "real_of_nat_number_of"},
       
    28              @{thm "real_of_nat_Suc"}, @{thm "real_of_nat_one"}, @{thm "real_of_one"},
       
    29              @{thm "real_of_int_zero"}, @{thm "real_of_nat_zero"},
       
    30              @{thm "Ring_and_Field.divide_zero"}, 
       
    31              @{thm "divide_divide_eq_left"}, @{thm "times_divide_eq_right"}, 
       
    32              @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
       
    33              @{thm "diff_def"}, @{thm "minus_divide_left"}]
       
    34 val comp_ths = ths @ comp_arith @ simp_thms 
       
    35 
       
    36 
       
    37 val zdvd_int = @{thm "zdvd_int"};
       
    38 val zdiff_int_split = @{thm "zdiff_int_split"};
       
    39 val all_nat = @{thm "all_nat"};
       
    40 val ex_nat = @{thm "ex_nat"};
       
    41 val number_of1 = @{thm "number_of1"};
       
    42 val number_of2 = @{thm "number_of2"};
       
    43 val split_zdiv = @{thm "split_zdiv"};
       
    44 val split_zmod = @{thm "split_zmod"};
       
    45 val mod_div_equality' = @{thm "mod_div_equality'"};
       
    46 val split_div' = @{thm "split_div'"};
       
    47 val Suc_plus1 = @{thm "Suc_plus1"};
       
    48 val imp_le_cong = @{thm "imp_le_cong"};
       
    49 val conj_le_cong = @{thm "conj_le_cong"};
       
    50 val nat_mod_add_eq = @{thm "mod_add1_eq"} RS sym;
       
    51 val nat_mod_add_left_eq = @{thm "mod_add_left_eq"} RS sym;
       
    52 val nat_mod_add_right_eq = @{thm "mod_add_right_eq"} RS sym;
       
    53 val int_mod_add_eq = @{thm "zmod_zadd1_eq"} RS sym;
       
    54 val int_mod_add_left_eq = @{thm "zmod_zadd_left_eq"} RS sym;
       
    55 val int_mod_add_right_eq = @{thm "zmod_zadd_right_eq"} RS sym;
       
    56 val nat_div_add_eq = @{thm "div_add1_eq"} RS sym;
       
    57 val int_div_add_eq = @{thm "zdiv_zadd1_eq"} RS sym;
       
    58 val ZDIVISION_BY_ZERO_MOD = @{thm "DIVISION_BY_ZERO"} RS conjunct2;
       
    59 val ZDIVISION_BY_ZERO_DIV = @{thm "DIVISION_BY_ZERO"} RS conjunct1;
       
    60 
       
    61 fun prepare_for_mir thy q fm = 
       
    62   let
       
    63     val ps = Logic.strip_params fm
       
    64     val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
       
    65     val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
       
    66     fun mk_all ((s, T), (P,n)) =
       
    67       if 0 mem loose_bnos P then
       
    68         (HOLogic.all_const T $ Abs (s, T, P), n)
       
    69       else (incr_boundvars ~1 P, n-1)
       
    70     fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
       
    71       val rhs = hs
       
    72 (*    val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
       
    73     val np = length ps
       
    74     val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
       
    75       (foldr HOLogic.mk_imp c rhs, np) ps
       
    76     val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
       
    77       (term_frees fm' @ term_vars fm');
       
    78     val fm2 = foldr mk_all2 fm' vs
       
    79   in (fm2, np + length vs, length rhs) end;
       
    80 
       
    81 (*Object quantifier to meta --*)
       
    82 fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
       
    83 
       
    84 (* object implication to meta---*)
       
    85 fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
       
    86 
       
    87 
       
    88 fun mir_tac ctxt q i = 
       
    89     (ObjectLogic.atomize_prems_tac i)
       
    90         THEN (simp_tac (HOL_basic_ss addsimps [@{thm "abs_ge_zero"}] addsimps simp_thms) i)
       
    91         THEN (REPEAT_DETERM (split_tac [@{thm "split_min"}, @{thm "split_max"},@{thm "abs_split"}] i))
       
    92         THEN (fn st =>
       
    93   let
       
    94     val g = List.nth (prems_of st, i - 1)
       
    95     val thy = ProofContext.theory_of ctxt
       
    96     (* Transform the term*)
       
    97     val (t,np,nh) = prepare_for_mir thy q g
       
    98     (* Some simpsets for dealing with mod div abs and nat*)
       
    99     val mod_div_simpset = HOL_basic_ss 
       
   100                         addsimps [refl,nat_mod_add_eq, 
       
   101                                   @{thm "mod_self"}, @{thm "zmod_self"},
       
   102                                   @{thm "zdiv_zero"},@{thm "zmod_zero"},@{thm "div_0"}, @{thm "mod_0"},
       
   103                                   @{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, @{thm "mod_1"},
       
   104                                   @{thm "Suc_plus1"}]
       
   105                         addsimps @{thms add_ac}
       
   106                         addsimprocs [cancel_div_mod_proc]
       
   107     val simpset0 = HOL_basic_ss
       
   108       addsimps [mod_div_equality', Suc_plus1]
       
   109       addsimps comp_ths
       
   110       addsplits [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, @{thm "split_min"}, @{thm "split_max"}]
       
   111     (* Simp rules for changing (n::int) to int n *)
       
   112     val simpset1 = HOL_basic_ss
       
   113       addsimps [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] @ map (fn r => r RS sym)
       
   114         [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, 
       
   115          @{thm "zmult_int"}]
       
   116       addsplits [@{thm "zdiff_int_split"}]
       
   117     (*simp rules for elimination of int n*)
       
   118 
       
   119     val simpset2 = HOL_basic_ss
       
   120       addsimps [@{thm "nat_0_le"}, @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, 
       
   121                 @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}]
       
   122       addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}]
       
   123     (* simp rules for elimination of abs *)
       
   124     val ct = cterm_of thy (HOLogic.mk_Trueprop t)
       
   125     (* Theorem for the nat --> int transformation *)
       
   126     val pre_thm = Seq.hd (EVERY
       
   127       [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
       
   128        TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1), TRY (simp_tac mir_ss 1)]
       
   129       (trivial ct))
       
   130     fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
       
   131     (* The result of the quantifier elimination *)
       
   132     val (th, tac) = case (prop_of pre_thm) of
       
   133         Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
       
   134     let val pth =
       
   135           (* If quick_and_dirty then run without proof generation as oracle*)
       
   136              if !quick_and_dirty
       
   137              then mirfr_oracle (false, cterm_of thy (Pattern.eta_long [] t1))
       
   138              else mirfr_oracle (true, cterm_of thy (Pattern.eta_long [] t1))
       
   139     in 
       
   140           (trace_msg ("calling procedure with term:\n" ^
       
   141              Syntax.string_of_term ctxt t1);
       
   142            ((pth RS iffD2) RS pre_thm,
       
   143             assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
       
   144     end
       
   145       | _ => (pre_thm, assm_tac i)
       
   146   in (rtac (((mp_step nh) o (spec_step np)) th) i 
       
   147       THEN tac) st
       
   148   end handle Subscript => no_tac st);
       
   149 
       
   150 fun mir_args meth =
       
   151  let val parse_flag = 
       
   152          Args.$$$ "no_quantify" >> (K (K false));
       
   153  in
       
   154    Method.simple_args 
       
   155   (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
       
   156     curry (Library.foldl op |>) true)
       
   157     (fn q => fn ctxt => meth ctxt q 1)
       
   158   end;
       
   159 
       
   160 fun mir_method ctxt q i = Method.METHOD (fn facts =>
       
   161   Method.insert_tac facts 1 THEN mir_tac ctxt q i);
       
   162 
       
   163 val setup =
       
   164   Method.add_method ("mir",
       
   165      mir_args mir_method,
       
   166      "decision procedure for MIR arithmetic");
       
   167 
       
   168 
       
   169 end