src/HOL/Tools/inductive_set_package.ML
changeset 23764 15f81c5d5330
child 23849 2a0e24c74593
equal deleted inserted replaced
23763:b136b53fcd2a 23764:15f81c5d5330
       
     1 (*  Title:      HOL/Tools/inductive_set_package.ML
       
     2     ID:         $Id$
       
     3     Author:     Stefan Berghofer, TU Muenchen
       
     4 
       
     5 Wrapper for defining inductive sets using package for inductive predicates,
       
     6 including infrastructure for converting between predicates and sets.
       
     7 *)
       
     8 
       
     9 signature INDUCTIVE_SET_PACKAGE =
       
    10 sig
       
    11   val to_set_att: thm list -> attribute
       
    12   val to_pred_att: thm list -> attribute
       
    13   val pred_set_conv_att: attribute
       
    14   val add_inductive_i: bool -> bstring -> bool -> bool -> bool ->
       
    15     (string * typ option * mixfix) list ->
       
    16     (string * typ option) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
       
    17       local_theory -> InductivePackage.inductive_result * local_theory
       
    18   val add_inductive: bool -> bool -> (string * string option * mixfix) list ->
       
    19     (string * string option * mixfix) list ->
       
    20     ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
       
    21     local_theory -> InductivePackage.inductive_result * local_theory
       
    22   val setup: theory -> theory
       
    23 end;
       
    24 
       
    25 structure InductiveSetPackage: INDUCTIVE_SET_PACKAGE =
       
    26 struct
       
    27 
       
    28 val note_theorem = LocalTheory.note Thm.theoremK;
       
    29 
       
    30 
       
    31 (**** simplify {(x1, ..., xn). (x1, ..., xn) : S} to S ****)
       
    32 
       
    33 val subset_antisym = thm "subset_antisym";
       
    34 
       
    35 val collect_mem_simproc =
       
    36   Simplifier.simproc (theory "Set") "Collect_mem" ["Collect t"] (fn thy => fn ss =>
       
    37     fn S as Const ("Collect", Type ("fun", [_, T])) $ t =>
       
    38          let val (u, Ts, ps) = HOLogic.strip_split t
       
    39          in case u of
       
    40            (c as Const ("op :", _)) $ q $ S' =>
       
    41              (case try (HOLogic.dest_tuple' ps) q of
       
    42                 NONE => NONE
       
    43               | SOME ts =>
       
    44                   if not (loose_bvar (S', 0)) andalso
       
    45                     ts = map Bound (length ps downto 0)
       
    46                   then
       
    47                     let val simp = full_simp_tac (Simplifier.inherit_context ss
       
    48                       (HOL_basic_ss addsimps [split_paired_all, split_conv])) 1
       
    49                     in
       
    50                       SOME (Goal.prove (Simplifier.the_context ss) [] []
       
    51                         (Const ("==", T --> T --> propT) $ S $ S')
       
    52                         (K (EVERY
       
    53                           [rtac eq_reflection 1, rtac subset_antisym 1,
       
    54                            rtac subsetI 1, dtac CollectD 1, simp,
       
    55                            rtac subsetI 1, rtac CollectI 1, simp])))
       
    56                     end
       
    57                   else NONE)
       
    58          | _ => NONE
       
    59          end
       
    60      | _ => NONE);
       
    61 
       
    62 (***********************************************************************************)
       
    63 (* simplifies (%x y. (x, y) : S & P x y) to (%x y. (x, y) : S Int {(x, y). P x y}) *)
       
    64 (* and        (%x y. (x, y) : S | P x y) to (%x y. (x, y) : S Un {(x, y). P x y})  *)
       
    65 (* used for converting "strong" (co)induction rules                                *)
       
    66 (***********************************************************************************)
       
    67 
       
    68 val strong_ind_simproc =
       
    69   Simplifier.simproc HOL.thy "strong_ind" ["t"] (fn thy => fn ss => fn t =>
       
    70     let
       
    71       val xs = strip_abs_vars t;
       
    72       fun close t = fold (fn x => fn u => all (fastype_of x) $ lambda x u)
       
    73         (term_vars t) t;
       
    74       fun mkop "op &" T x = SOME (Const ("op Int", T --> T --> T), x)
       
    75         | mkop "op |" T x = SOME (Const ("op Un", T --> T --> T), x)
       
    76         | mkop _ _ _ = NONE;
       
    77       fun mk_collect p T t =
       
    78         let val U = HOLogic.dest_setT T
       
    79         in HOLogic.Collect_const U $
       
    80           HOLogic.ap_split' (HOLogic.prod_factors p) U HOLogic.boolT t
       
    81         end;
       
    82       fun decomp (Const (s, _) $ ((m as Const ("op :",
       
    83             Type (_, [_, Type (_, [T, _])]))) $ p $ S) $ u) =
       
    84               mkop s T (m, p, S, mk_collect p T (head_of u))
       
    85         | decomp (Const (s, _) $ u $ ((m as Const ("op :",
       
    86             Type (_, [_, Type (_, [T, _])]))) $ p $ S)) =
       
    87               mkop s T (m, p, mk_collect p T (head_of u), S)
       
    88         | decomp _ = NONE;
       
    89       val simp = full_simp_tac (Simplifier.inherit_context ss
       
    90         (HOL_basic_ss addsimps [mem_Collect_eq, split_conv])) 1;
       
    91     in
       
    92       if null xs then NONE
       
    93       else case decomp (strip_abs_body t) of
       
    94         NONE => NONE
       
    95       | SOME (bop, (m, p, S, S')) =>
       
    96           SOME (mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
       
    97             (close (HOLogic.mk_Trueprop (HOLogic.mk_eq
       
    98               (t, list_abs (xs, m $ p $ (bop $ S $ S'))))))
       
    99             (K (EVERY
       
   100               [REPEAT (rtac ext 1), rtac iffI 1,
       
   101                EVERY [etac conjE 1, rtac IntI 1, simp, simp,
       
   102                  etac IntE 1, rtac conjI 1, simp, simp] ORELSE
       
   103                EVERY [etac disjE 1, rtac UnI1 1, simp, rtac UnI2 1, simp,
       
   104                  etac UnE 1, rtac disjI1 1, simp, rtac disjI2 1, simp]]))))
       
   105             handle ERROR _ => NONE
       
   106     end);
       
   107 
       
   108 (* only eta contract terms occurring as arguments of functions satisfying p *)
       
   109 fun eta_contract p =
       
   110   let
       
   111     fun eta b (Abs (a, T, body)) =
       
   112           (case eta b body of
       
   113              body' as (f $ Bound 0) =>
       
   114                if loose_bvar1 (f, 0) orelse not b then Abs (a, T, body')
       
   115                else incr_boundvars ~1 f
       
   116            | body' => Abs (a, T, body'))
       
   117       | eta b (t $ u) = eta b t $ eta (p (head_of t)) u
       
   118       | eta b t = t
       
   119   in eta false end;
       
   120 
       
   121 fun eta_contract_thm p =
       
   122   Conv.fconv_rule (Conv.then_conv (Thm.beta_conversion true, fn ct =>
       
   123     Thm.transitive (Thm.eta_conversion ct)
       
   124       (Thm.symmetric (Thm.eta_conversion
       
   125         (cterm_of (theory_of_cterm ct) (eta_contract p (term_of ct)))))));
       
   126 
       
   127 
       
   128 (***********************************************************)
       
   129 (* rules for converting between predicate and set notation *)
       
   130 (*                                                         *)
       
   131 (* rules for converting predicates to sets have the form   *)
       
   132 (* P (%x y. (x, y) : s) = (%x y. (x, y) : S s)             *)
       
   133 (*                                                         *)
       
   134 (* rules for converting sets to predicates have the form   *)
       
   135 (* S {(x, y). p x y} = {(x, y). P p x y}                   *)
       
   136 (*                                                         *)
       
   137 (* where s and p are parameters                            *)
       
   138 (***********************************************************)
       
   139 
       
   140 structure PredSetConvData = GenericDataFun
       
   141 (
       
   142   type T =
       
   143     {(* rules for converting predicates to sets *)
       
   144      to_set_simps: thm list,
       
   145      (* rules for converting sets to predicates *)
       
   146      to_pred_simps: thm list,
       
   147      (* arities of functions of type t set => ... => u set *)
       
   148      set_arities: (typ * (int list list option list * int list list option)) list Symtab.table,
       
   149      (* arities of functions of type (t => ... => bool) => u => ... => bool *)
       
   150      pred_arities: (typ * (int list list option list * int list list option)) list Symtab.table};
       
   151   val empty = {to_set_simps = [], to_pred_simps = [],
       
   152     set_arities = Symtab.empty, pred_arities = Symtab.empty};
       
   153   val extend = I;
       
   154   fun merge _
       
   155     ({to_set_simps = to_set_simps1, to_pred_simps = to_pred_simps1,
       
   156       set_arities = set_arities1, pred_arities = pred_arities1},
       
   157      {to_set_simps = to_set_simps2, to_pred_simps = to_pred_simps2,
       
   158       set_arities = set_arities2, pred_arities = pred_arities2}) =
       
   159     {to_set_simps = Drule.merge_rules (to_set_simps1, to_set_simps2),
       
   160      to_pred_simps = Drule.merge_rules (to_pred_simps1, to_pred_simps2),
       
   161      set_arities = Symtab.merge_list op = (set_arities1, set_arities2),
       
   162      pred_arities = Symtab.merge_list op = (pred_arities1, pred_arities2)};
       
   163 );
       
   164 
       
   165 fun name_type_of (Free p) = SOME p
       
   166   | name_type_of (Const p) = SOME p
       
   167   | name_type_of _ = NONE;
       
   168 
       
   169 fun map_type f (Free (s, T)) = Free (s, f T)
       
   170   | map_type f (Var (ixn, T)) = Var (ixn, f T)
       
   171   | map_type f _ = error "map_type";
       
   172 
       
   173 fun find_most_specific is_inst f eq xs T =
       
   174   find_first (fn U => is_inst (T, f U)
       
   175     andalso forall (fn U' => eq (f U, f U') orelse not
       
   176       (is_inst (T, f U') andalso is_inst (f U', f U)))
       
   177         xs) xs;
       
   178 
       
   179 fun lookup_arity thy arities (s, T) = case Symtab.lookup arities s of
       
   180     NONE => NONE
       
   181   | SOME xs => find_most_specific (Sign.typ_instance thy) fst (op =) xs T;
       
   182 
       
   183 fun lookup_rule thy f rules = find_most_specific
       
   184   (swap #> Pattern.matches thy) (f #> fst) (op aconv) rules;
       
   185 
       
   186 fun infer_arities thy arities (optf, t) fs = case strip_comb t of
       
   187     (Abs (s, T, u), []) => infer_arities thy arities (NONE, u) fs
       
   188   | (Abs _, _) => infer_arities thy arities (NONE, Envir.beta_norm t) fs
       
   189   | (u, ts) => (case Option.map (lookup_arity thy arities) (name_type_of u) of
       
   190       SOME (SOME (_, (arity, _))) =>
       
   191         (fold (infer_arities thy arities) (arity ~~ List.take (ts, length arity)) fs
       
   192            handle Subscript => error "infer_arities: bad term")
       
   193     | _ => fold (infer_arities thy arities) (map (pair NONE) ts)
       
   194       (case optf of
       
   195          NONE => fs
       
   196        | SOME f => AList.update op = (u, the_default f
       
   197            (Option.map (curry op inter f) (AList.lookup op = fs u))) fs));
       
   198 
       
   199 
       
   200 (**************************************************************)
       
   201 (*    derive the to_pred equation from the to_set equation    *)
       
   202 (*                                                            *)
       
   203 (* 1. instantiate each set parameter with {(x, y). p x y}     *)
       
   204 (* 2. apply %P. {(x, y). P x y} to both sides of the equation *)
       
   205 (* 3. simplify                                                *)
       
   206 (**************************************************************)
       
   207 
       
   208 fun mk_to_pred_inst thy fs =
       
   209   map (fn (x, ps) =>
       
   210     let
       
   211       val U = HOLogic.dest_setT (fastype_of x);
       
   212       val x' = map_type (K (HOLogic.prodT_factors' ps U ---> HOLogic.boolT)) x
       
   213     in
       
   214       (cterm_of thy x,
       
   215        cterm_of thy (HOLogic.Collect_const U $
       
   216          HOLogic.ap_split' ps U HOLogic.boolT x'))
       
   217     end) fs;
       
   218 
       
   219 fun mk_to_pred_eq p fs optfs' T thm =
       
   220   let
       
   221     val thy = theory_of_thm thm;
       
   222     val insts = mk_to_pred_inst thy fs;
       
   223     val thm' = Thm.instantiate ([], insts) thm;
       
   224     val thm'' = (case optfs' of
       
   225         NONE => thm' RS sym
       
   226       | SOME fs' =>
       
   227           let
       
   228             val U = HOLogic.dest_setT (body_type T);
       
   229             val Ts = HOLogic.prodT_factors' fs' U;
       
   230             (* FIXME: should cterm_instantiate increment indexes? *)
       
   231             val arg_cong' = Thm.incr_indexes (Thm.maxidx_of thm + 1) arg_cong;
       
   232             val (arg_cong_f, _) = arg_cong' |> cprop_of |> Drule.strip_imp_concl |>
       
   233               Thm.dest_comb |> snd |> Drule.strip_comb |> snd |> hd |> Thm.dest_comb
       
   234           in
       
   235             thm' RS (Drule.cterm_instantiate [(arg_cong_f,
       
   236               cterm_of thy (Abs ("P", Ts ---> HOLogic.boolT,
       
   237                 HOLogic.Collect_const U $ HOLogic.ap_split' fs' U
       
   238                   HOLogic.boolT (Bound 0))))] arg_cong' RS sym)
       
   239           end)
       
   240   in
       
   241     Simplifier.simplify (HOL_basic_ss addsimps [mem_Collect_eq, split_conv]
       
   242       addsimprocs [collect_mem_simproc]) thm'' |>
       
   243         zero_var_indexes |> eta_contract_thm (equal p)
       
   244   end;
       
   245 
       
   246 
       
   247 (**** declare rules for converting predicates to sets ****)
       
   248 
       
   249 fun add ctxt thm {to_set_simps, to_pred_simps, set_arities, pred_arities} =
       
   250   case prop_of thm of
       
   251     Const ("Trueprop", _) $ (Const ("op =", Type (_, [T, _])) $ lhs $ rhs) =>
       
   252       (case body_type T of
       
   253          Type ("bool", []) =>
       
   254            let
       
   255              val thy = Context.theory_of ctxt;
       
   256              fun factors_of t fs = case strip_abs_body t of
       
   257                  Const ("op :", _) $ u $ S =>
       
   258                    if is_Free S orelse is_Var S then
       
   259                      let val ps = HOLogic.prod_factors u
       
   260                      in (SOME ps, (S, ps) :: fs) end
       
   261                    else (NONE, fs)
       
   262                | _ => (NONE, fs);
       
   263              val (h, ts) = strip_comb lhs
       
   264              val (pfs, fs) = fold_map factors_of ts [];
       
   265              val ((h', ts'), fs') = (case rhs of
       
   266                  Abs _ => (case strip_abs_body rhs of
       
   267                      Const ("op :", _) $ u $ S =>
       
   268                        (strip_comb S, SOME (HOLogic.prod_factors u))
       
   269                    | _ => error "member symbol on right-hand side expected")
       
   270                | _ => (strip_comb rhs, NONE))
       
   271            in
       
   272              case (name_type_of h, name_type_of h') of
       
   273                (SOME (s, T), SOME (s', T')) =>
       
   274                  (case Symtab.lookup set_arities s' of
       
   275                     NONE => ()
       
   276                   | SOME xs => if exists (fn (U, _) =>
       
   277                         Sign.typ_instance thy (T', U) andalso
       
   278                         Sign.typ_instance thy (U, T')) xs
       
   279                       then
       
   280                         error ("Clash of conversion rules for operator " ^ s')
       
   281                       else ();
       
   282                   {to_set_simps = thm :: to_set_simps,
       
   283                    to_pred_simps =
       
   284                      mk_to_pred_eq h fs fs' T' thm :: to_pred_simps,
       
   285                    set_arities = Symtab.insert_list op = (s',
       
   286                      (T', (map (AList.lookup op = fs) ts', fs'))) set_arities,
       
   287                    pred_arities = Symtab.insert_list op = (s,
       
   288                      (T, (pfs, fs'))) pred_arities})
       
   289              | _ => error "set / predicate constant expected"
       
   290            end
       
   291        | _ => error "equation between predicates expected")
       
   292   | _ => error "equation expected";
       
   293 
       
   294 val pred_set_conv_att = Thm.declaration_attribute
       
   295   (fn thm => fn ctxt => PredSetConvData.map (add ctxt thm) ctxt);
       
   296 
       
   297 
       
   298 (**** convert theorem in set notation to predicate notation ****)
       
   299 
       
   300 fun is_pred tab t =
       
   301   case Option.map (Symtab.lookup tab o fst) (name_type_of t) of
       
   302     SOME (SOME _) => true | _ => false;
       
   303 
       
   304 fun to_pred_simproc rules =
       
   305   let val rules' = map mk_meta_eq rules
       
   306   in
       
   307     Simplifier.simproc HOL.thy "to_pred" ["t"]
       
   308       (fn thy => K (lookup_rule thy (prop_of #> Logic.dest_equals) rules'))
       
   309   end;
       
   310 
       
   311 fun to_pred_proc thy rules t = case lookup_rule thy I rules t of
       
   312     NONE => NONE
       
   313   | SOME (lhs, rhs) =>
       
   314       SOME (Envir.subst_vars
       
   315         (Pattern.match thy (lhs, t) (Vartab.empty, Vartab.empty)) rhs);
       
   316 
       
   317 fun to_pred thms ctxt thm =
       
   318   let
       
   319     val thy = Context.theory_of ctxt;
       
   320     val {to_pred_simps, set_arities, pred_arities, ...} =
       
   321       fold (add ctxt) thms (PredSetConvData.get ctxt);
       
   322     val fs = filter (is_Var o fst)
       
   323       (infer_arities thy set_arities (NONE, prop_of thm) []);
       
   324     (* instantiate each set parameter with {(x, y). p x y} *)
       
   325     val insts = mk_to_pred_inst thy fs
       
   326   in
       
   327     thm |>
       
   328     Thm.instantiate ([], insts) |>
       
   329     Simplifier.full_simplify (HOL_basic_ss addsimprocs
       
   330       [to_pred_simproc (mem_Collect_eq :: split_conv :: to_pred_simps)]) |>
       
   331     eta_contract_thm (is_pred pred_arities)
       
   332   end;
       
   333 
       
   334 val to_pred_att = Thm.rule_attribute o to_pred;
       
   335     
       
   336 
       
   337 (**** convert theorem in predicate notation to set notation ****)
       
   338 
       
   339 fun to_set thms ctxt thm =
       
   340   let
       
   341     val thy = Context.theory_of ctxt;
       
   342     val {to_set_simps, pred_arities, ...} =
       
   343       fold (add ctxt) thms (PredSetConvData.get ctxt);
       
   344     val fs = filter (is_Var o fst)
       
   345       (infer_arities thy pred_arities (NONE, prop_of thm) []);
       
   346     (* instantiate each predicate parameter with %x y. (x, y) : s *)
       
   347     val insts = map (fn (x, ps) =>
       
   348       let
       
   349         val Ts = binder_types (fastype_of x);
       
   350         val T = HOLogic.mk_tupleT ps Ts;
       
   351         val x' = map_type (K (HOLogic.mk_setT T)) x
       
   352       in
       
   353         (cterm_of thy x,
       
   354          cterm_of thy (list_abs (map (pair "x") Ts, HOLogic.mk_mem
       
   355            (HOLogic.mk_tuple' ps T (map Bound (length ps downto 0)), x'))))
       
   356       end) fs
       
   357   in
       
   358     Simplifier.full_simplify (HOL_basic_ss addsimps to_set_simps
       
   359         addsimprocs [strong_ind_simproc])
       
   360       (Thm.instantiate ([], insts) thm)
       
   361   end;
       
   362 
       
   363 val to_set_att = Thm.rule_attribute o to_set;
       
   364 
       
   365 
       
   366 (**** preprocessor for code generator ****)
       
   367 
       
   368 fun codegen_preproc thy =
       
   369   let
       
   370     val {to_pred_simps, set_arities, pred_arities, ...} =
       
   371       PredSetConvData.get (Context.Theory thy);
       
   372     fun preproc thm =
       
   373       if exists_Const (fn (s, _) => case Symtab.lookup set_arities s of
       
   374           NONE => false
       
   375         | SOME arities => exists (fn (_, (xs, _)) =>
       
   376             forall is_none xs) arities) (prop_of thm)
       
   377       then
       
   378         thm |>
       
   379         Simplifier.full_simplify (HOL_basic_ss addsimprocs
       
   380           [to_pred_simproc (mem_Collect_eq :: split_conv :: to_pred_simps)]) |>
       
   381         eta_contract_thm (is_pred pred_arities)
       
   382       else thm
       
   383   in map preproc end;
       
   384 
       
   385 fun code_ind_att optmod = to_pred_att [] #> InductiveCodegen.add optmod NONE;
       
   386 
       
   387 
       
   388 (**** definition of inductive sets ****)
       
   389 
       
   390 fun add_ind_set_def verbose alt_name coind no_elim no_ind cs
       
   391     intros monos params cnames_syn ctxt =
       
   392   let
       
   393     val thy = ProofContext.theory_of ctxt;
       
   394     val {set_arities, pred_arities, to_pred_simps, ...} =
       
   395       PredSetConvData.get (Context.Proof ctxt);
       
   396     fun infer (Abs (_, _, t)) = infer t
       
   397       | infer (Const ("op :", _) $ t $ u) =
       
   398           infer_arities thy set_arities (SOME (HOLogic.prod_factors t), u)
       
   399       | infer (t $ u) = infer t #> infer u
       
   400       | infer _ = I;
       
   401     val new_arities = filter_out
       
   402       (fn (x as Free (_, Type ("fun", _)), _) => x mem params
       
   403         | _ => false) (fold (snd #> infer) intros []);
       
   404     val params' = map (fn x => (case AList.lookup op = new_arities x of
       
   405         SOME fs =>
       
   406           let
       
   407             val T = HOLogic.dest_setT (fastype_of x);
       
   408             val Ts = HOLogic.prodT_factors' fs T;
       
   409             val x' = map_type (K (Ts ---> HOLogic.boolT)) x
       
   410           in
       
   411             (x, (x',
       
   412               (HOLogic.Collect_const T $
       
   413                  HOLogic.ap_split' fs T HOLogic.boolT x',
       
   414                list_abs (map (pair "x") Ts, HOLogic.mk_mem
       
   415                  (HOLogic.mk_tuple' fs T (map Bound (length fs downto 0)),
       
   416                   x)))))
       
   417           end
       
   418        | NONE => (x, (x, (x, x))))) params;
       
   419     val (params1, (params2, params3)) =
       
   420       params' |> map snd |> split_list ||> split_list;
       
   421 
       
   422     (* equations for converting sets to predicates *)
       
   423     val ((cs', cs_info), eqns) = cs |> map (fn c as Free (s, T) =>
       
   424       let
       
   425         val fs = the_default [] (AList.lookup op = new_arities c);
       
   426         val U = HOLogic.dest_setT (body_type T);
       
   427         val Ts = HOLogic.prodT_factors' fs U;
       
   428         val c' = Free (s ^ "p",
       
   429           map fastype_of params1 @ Ts ---> HOLogic.boolT)
       
   430       in
       
   431         ((c', (fs, U, Ts)),
       
   432          (list_comb (c, params2),
       
   433           HOLogic.Collect_const U $ HOLogic.ap_split' fs U HOLogic.boolT
       
   434             (list_comb (c', params1))))
       
   435       end) |> split_list |>> split_list;
       
   436     val eqns' = eqns @
       
   437       map (prop_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq)
       
   438         (mem_Collect_eq :: split_conv :: to_pred_simps);
       
   439 
       
   440     (* predicate version of the introduction rules *)
       
   441     val intros' =
       
   442       map (fn (name_atts, t) => (name_atts,
       
   443         t |>
       
   444         map_aterms (fn u =>
       
   445           (case AList.lookup op = params' u of
       
   446              SOME (_, (u', _)) => u'
       
   447            | NONE => u)) |>
       
   448         Pattern.rewrite_term thy [] [to_pred_proc thy eqns'] |>
       
   449         eta_contract (member op = cs' orf is_pred pred_arities))) intros;
       
   450     val cnames_syn' = map (fn (s, _) => (s ^ "p", NoSyn)) cnames_syn;
       
   451     val monos' = map (to_pred [] (Context.Proof ctxt)) monos;
       
   452     val ({preds, intrs, elims, raw_induct, ...}, ctxt1) =
       
   453       InductivePackage.add_ind_def verbose "" coind
       
   454         no_elim no_ind cs' intros' monos' params1 cnames_syn' ctxt;
       
   455 
       
   456     (* define inductive sets using previously defined predicates *)
       
   457     val (defs, ctxt2) = LocalTheory.defs Thm.internalK
       
   458       (map (fn ((c_syn, (fs, U, _)), p) => (c_syn, (("", []),
       
   459          fold_rev lambda params (HOLogic.Collect_const U $
       
   460            HOLogic.ap_split' fs U HOLogic.boolT (list_comb (p, params3))))))
       
   461          (cnames_syn ~~ cs_info ~~ preds)) ctxt1;
       
   462 
       
   463     (* prove theorems for converting predicate to set notation *)
       
   464     val ctxt3 = fold
       
   465       (fn (((p, c as Free (s, _)), (fs, U, Ts)), (_, (_, def))) => fn ctxt =>
       
   466         let val conv_thm =
       
   467           Goal.prove ctxt (map (fst o dest_Free) params) []
       
   468             (HOLogic.mk_Trueprop (HOLogic.mk_eq
       
   469               (list_comb (p, params3),
       
   470                list_abs (map (pair "x") Ts, HOLogic.mk_mem
       
   471                  (HOLogic.mk_tuple' fs U (map Bound (length fs downto 0)),
       
   472                   list_comb (c, params))))))
       
   473             (K (REPEAT (rtac ext 1) THEN simp_tac (HOL_basic_ss addsimps
       
   474               [def, mem_Collect_eq, split_conv]) 1))
       
   475         in
       
   476           ctxt |> note_theorem ((s ^ "p_" ^ s ^ "_eq",
       
   477             [Attrib.internal (K pred_set_conv_att)]),
       
   478               [conv_thm]) |> snd
       
   479         end) (preds ~~ cs ~~ cs_info ~~ defs) ctxt2;
       
   480 
       
   481     (* convert theorems to set notation *)
       
   482     val rec_name = if alt_name = "" then
       
   483       space_implode "_" (map fst cnames_syn) else alt_name;
       
   484     val cnames = map (Sign.full_name (ProofContext.theory_of ctxt3) o #1) cnames_syn;  (* FIXME *)
       
   485     val (intr_names, intr_atts) = split_list (map fst intros);
       
   486     val raw_induct' = to_set [] (Context.Proof ctxt3) raw_induct;
       
   487     val (intrs', elims', induct, ctxt4) =
       
   488       InductivePackage.declare_rules rec_name coind no_ind cnames
       
   489       (map (to_set [] (Context.Proof ctxt3)) intrs) intr_names intr_atts
       
   490       (map (fn th => (to_set [] (Context.Proof ctxt3) th,
       
   491          map fst (fst (RuleCases.get th)))) elims)
       
   492       raw_induct' ctxt3
       
   493   in
       
   494     ({intrs = intrs', elims = elims', induct = induct,
       
   495       raw_induct = raw_induct', preds = map fst defs},
       
   496      ctxt4)
       
   497   end;
       
   498 
       
   499 val add_inductive_i = InductivePackage.gen_add_inductive_i add_ind_set_def;
       
   500 val add_inductive = InductivePackage.gen_add_inductive add_ind_set_def;
       
   501 
       
   502 val mono_add_att = to_pred_att [] #> InductivePackage.mono_add;
       
   503 val mono_del_att = to_pred_att [] #> InductivePackage.mono_del;
       
   504 
       
   505 
       
   506 (** package setup **)
       
   507 
       
   508 (* setup theory *)
       
   509 
       
   510 val setup =
       
   511   Attrib.add_attributes
       
   512     [("pred_set_conv", Attrib.no_args pred_set_conv_att,
       
   513       "declare rules for converting between predicate and set notation"),
       
   514      ("to_set", Attrib.syntax (Attrib.thms >> to_set_att),
       
   515       "convert rule to set notation"),
       
   516      ("to_pred", Attrib.syntax (Attrib.thms >> to_pred_att),
       
   517       "convert rule to predicate notation")] #>
       
   518   Codegen.add_attribute "ind_set"
       
   519     (Scan.option (Args.$$$ "target" |-- Args.colon |-- Args.name) >> code_ind_att) #>
       
   520   Codegen.add_preprocessor codegen_preproc #>
       
   521   Attrib.add_attributes [("mono_set", Attrib.add_del_args mono_add_att mono_del_att,
       
   522     "declaration of monotonicity rule for set operators")] #>
       
   523   Context.theory_map (Simplifier.map_ss (fn ss =>
       
   524     ss addsimprocs [collect_mem_simproc]));
       
   525 
       
   526 (* outer syntax *)
       
   527 
       
   528 local structure P = OuterParse and K = OuterKeyword in
       
   529 
       
   530 val ind_set_decl = InductivePackage.gen_ind_decl add_ind_set_def;
       
   531 
       
   532 val inductive_setP =
       
   533   OuterSyntax.command "inductive_set" "define inductive sets" K.thy_decl (ind_set_decl false);
       
   534 
       
   535 val coinductive_setP =
       
   536   OuterSyntax.command "coinductive_set" "define coinductive sets" K.thy_decl (ind_set_decl true);
       
   537 
       
   538 val _ = OuterSyntax.add_parsers [inductive_setP, coinductive_setP];
       
   539 
       
   540 end;
       
   541 
       
   542 end;