src/ZF/intr_elim.ML
changeset 516 1957113f0d7d
parent 495 612888a07889
child 543 e961b2092869
equal deleted inserted replaced
515:abcc438e7c27 516:1957113f0d7d
     1 (*  Title: 	ZF/intr-elim.ML
     1 (*  Title: 	ZF/intr-elim.ML
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1993  University of Cambridge
     4     Copyright   1994  University of Cambridge
     5 
     5 
     6 Introduction/elimination rule module -- for Inductive/Coinductive Definitions
     6 Introduction/elimination rule module -- for Inductive/Coinductive Definitions
     7 
       
     8 Features:
       
     9 * least or greatest fixedpoints
       
    10 * user-specified product and sum constructions
       
    11 * mutually recursive definitions
       
    12 * definitions involving arbitrary monotone operators
       
    13 * automatically proves introduction and elimination rules
       
    14 
       
    15 The recursive sets must *already* be declared as constants in parent theory!
       
    16 
       
    17   Introduction rules have the form
       
    18   [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
       
    19   where M is some monotone operator (usually the identity)
       
    20   P(x) is any (non-conjunctive) side condition on the free variables
       
    21   ti, t are any terms
       
    22   Sj, Sk are two of the sets being defined in mutual recursion
       
    23 
       
    24 Sums are used only for mutual recursion;
       
    25 Products are used only to derive "streamlined" induction rules for relations
       
    26 *)
     7 *)
    27 
     8 
    28 signature FP =		(** Description of a fixed point operator **)
     9 signature INDUCTIVE_ARG =	(** Description of a (co)inductive def **)
    29   sig
    10   sig
    30   val oper	: term			(*fixed point operator*)
    11   val thy        : theory               (*new theory with inductive defs*)
    31   val bnd_mono	: term			(*monotonicity predicate*)
       
    32   val bnd_monoI	: thm			(*intro rule for bnd_mono*)
       
    33   val subs	: thm			(*subset theorem for fp*)
       
    34   val Tarski	: thm			(*Tarski's fixed point theorem*)
       
    35   val induct	: thm			(*induction/coinduction rule*)
       
    36   end;
       
    37 
       
    38 signature PR =			(** Description of a Cartesian product **)
       
    39   sig
       
    40   val sigma	: term			(*Cartesian product operator*)
       
    41   val pair	: term			(*pairing operator*)
       
    42   val split_const  : term		(*splitting operator*)
       
    43   val fsplit_const : term		(*splitting operator for formulae*)
       
    44   val pair_iff	: thm			(*injectivity of pairing, using <->*)
       
    45   val split_eq	: thm			(*equality rule for split*)
       
    46   val fsplitI	: thm			(*intro rule for fsplit*)
       
    47   val fsplitD	: thm			(*destruct rule for fsplit*)
       
    48   val fsplitE	: thm			(*elim rule for fsplit*)
       
    49   end;
       
    50 
       
    51 signature SU =			(** Description of a disjoint sum **)
       
    52   sig
       
    53   val sum	: term			(*disjoint sum operator*)
       
    54   val inl	: term			(*left injection*)
       
    55   val inr	: term			(*right injection*)
       
    56   val elim	: term			(*case operator*)
       
    57   val case_inl	: thm			(*inl equality rule for case*)
       
    58   val case_inr	: thm			(*inr equality rule for case*)
       
    59   val inl_iff	: thm			(*injectivity of inl, using <->*)
       
    60   val inr_iff	: thm			(*injectivity of inr, using <->*)
       
    61   val distinct	: thm			(*distinctness of inl, inr using <->*)
       
    62   val distinct'	: thm			(*distinctness of inr, inl using <->*)
       
    63   end;
       
    64 
       
    65 signature INDUCTIVE =		(** Description of a (co)inductive defn **)
       
    66   sig
       
    67   val thy        : theory		(*parent theory*)
       
    68   val thy_name   : string               (*name of generated theory*)
       
    69   val rec_doms   : (string*string) list	(*recursion ops and their domains*)
       
    70   val sintrs     : string list		(*desired introduction rules*)
       
    71   val monos      : thm list		(*monotonicity of each M operator*)
    12   val monos      : thm list		(*monotonicity of each M operator*)
    72   val con_defs   : thm list		(*definitions of the constructors*)
    13   val con_defs   : thm list		(*definitions of the constructors*)
    73   val type_intrs : thm list		(*type-checking intro rules*)
    14   val type_intrs : thm list		(*type-checking intro rules*)
    74   val type_elims : thm list		(*type-checking elim rules*)
    15   val type_elims : thm list		(*type-checking elim rules*)
    75   end;
    16   end;
    76 
    17 
       
    18 (*internal items*)
       
    19 signature INDUCTIVE_I =
       
    20   sig
       
    21   val rec_tms    : term list		(*the recursive sets*)
       
    22   val domts      : term list		(*their domains*)
       
    23   val intr_tms   : term list		(*terms for the introduction rules*)
       
    24   end;
       
    25 
    77 signature INTR_ELIM =
    26 signature INTR_ELIM =
    78   sig
    27   sig
    79   val thy        : theory		(*new theory*)
    28   val thy        : theory               (*copy of input theory*)
    80   val thy_name   : string               (*name of generated theory*)
       
    81   val defs	 : thm list		(*definitions made in thy*)
    29   val defs	 : thm list		(*definitions made in thy*)
    82   val bnd_mono   : thm			(*monotonicity for the lfp definition*)
    30   val bnd_mono   : thm			(*monotonicity for the lfp definition*)
    83   val unfold     : thm			(*fixed-point equation*)
    31   val unfold     : thm			(*fixed-point equation*)
    84   val dom_subset : thm			(*inclusion of recursive set in dom*)
    32   val dom_subset : thm			(*inclusion of recursive set in dom*)
    85   val intrs      : thm list		(*introduction rules*)
    33   val intrs      : thm list		(*introduction rules*)
    86   val elim       : thm			(*case analysis theorem*)
    34   val elim       : thm			(*case analysis theorem*)
    87   val raw_induct : thm			(*raw induction rule from Fp.induct*)
    35   val raw_induct : thm			(*raw induction rule from Fp.induct*)
    88   val mk_cases : thm list -> string -> thm	(*generates case theorems*)
    36   val mk_cases : thm list -> string -> thm	(*generates case theorems*)
    89   (*internal items...*)
    37   val rec_names  : string list		(*names of recursive sets*)
    90   val big_rec_tm : term			(*the lhs of the fixedpoint defn*)
       
    91   val rec_tms    : term list		(*the mutually recursive sets*)
       
    92   val domts      : term list		(*domains of the recursive sets*)
       
    93   val intr_tms   : term list		(*terms for the introduction rules*)
       
    94   val rec_params : term list		(*parameters of the recursion*)
       
    95   val sumprod_free_SEs : thm list       (*destruct rules for Su and Pr*)
    38   val sumprod_free_SEs : thm list       (*destruct rules for Su and Pr*)
    96   end;
    39   end;
    97 
    40 
       
    41 (*prove intr/elim rules for a fixedpoint definition*)
       
    42 functor Intr_elim_Fun
       
    43     (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end  
       
    44      and Fp: FP and Pr : PR and Su : SU) : INTR_ELIM =
       
    45 struct
       
    46 open Logic Inductive Ind_Syntax;
    98 
    47 
    99 functor Intr_elim_Fun (structure Ind: INDUCTIVE and 
    48 val rec_names = map (#1 o dest_Const o head_of) rec_tms;
   100 		       Fp: FP and Pr : PR and Su : SU) : INTR_ELIM =
       
   101 struct
       
   102 open Logic Ind;
       
   103 
       
   104 (*** Extract basic information from arguments ***)
       
   105 
       
   106 val sign = sign_of Ind.thy;
       
   107 
       
   108 fun rd T a = 
       
   109     read_cterm sign (a,T)
       
   110     handle ERROR => error ("The error above occurred for " ^ a);
       
   111 
       
   112 val rec_names = map #1 rec_doms
       
   113 and domts     = map (term_of o rd iT o #2) rec_doms;
       
   114 
       
   115 val dummy = assert_all Syntax.is_identifier rec_names
       
   116    (fn a => "Name of recursive set not an identifier: " ^ a);
       
   117 
       
   118 val dummy = assert_all (is_some o lookup_const sign) rec_names
       
   119    (fn a => "Name of recursive set not declared as constant: " ^ a);
       
   120 
       
   121 val intr_tms = map (term_of o rd propT) sintrs;
       
   122 
       
   123 local (*Checking the introduction rules*)
       
   124   val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
       
   125 
       
   126   fun intr_ok set =
       
   127       case head_of set of Const(a,recT) => a mem rec_names | _ => false;
       
   128 
       
   129   val dummy =  assert_all intr_ok intr_sets
       
   130      (fn t => "Conclusion of rule does not name a recursive set: " ^ 
       
   131 	      Sign.string_of_term sign t);
       
   132 in
       
   133 val (Const(_,recT),rec_params) = strip_comb (hd intr_sets)
       
   134 end;
       
   135 
       
   136 val rec_hds = map (fn a=> Const(a,recT)) rec_names;
       
   137 val rec_tms = map (fn rec_hd=> list_comb(rec_hd,rec_params)) rec_hds;
       
   138 
       
   139 val dummy = assert_all is_Free rec_params
       
   140     (fn t => "Param in recursion term not a free variable: " ^
       
   141              Sign.string_of_term sign t);
       
   142 
       
   143 (*** Construct the lfp definition ***)
       
   144 
       
   145 val mk_variant = variant (foldr add_term_names (intr_tms,[]));
       
   146 
       
   147 val z' = mk_variant"z"
       
   148 and X' = mk_variant"X"
       
   149 and w' = mk_variant"w";
       
   150 
       
   151 (*simple error-checking in the premises*)
       
   152 fun chk_prem rec_hd (Const("op &",_) $ _ $ _) =
       
   153 	error"Premises may not be conjuctive"
       
   154   | chk_prem rec_hd (Const("op :",_) $ t $ X) = 
       
   155 	deny (rec_hd occs t) "Recursion term on left of member symbol"
       
   156   | chk_prem rec_hd t = 
       
   157 	deny (rec_hd occs t) "Recursion term in side formula";
       
   158 
       
   159 fun dest_tprop (Const("Trueprop",_) $ P) = P
       
   160   | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^ 
       
   161 			  Sign.string_of_term sign Q);
       
   162 
       
   163 (*Makes a disjunct from an introduction rule*)
       
   164 fun lfp_part intr = (*quantify over rule's free vars except parameters*)
       
   165   let val prems = map dest_tprop (strip_imp_prems intr)
       
   166       val dummy = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
       
   167       val exfrees = term_frees intr \\ rec_params
       
   168       val zeq = eq_const $ (Free(z',iT)) $ (#1 (rule_concl intr))
       
   169   in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end;
       
   170 
       
   171 val dom_sum = fold_bal (app Su.sum) domts;
       
   172 
       
   173 (*The Part(A,h) terms -- compose injections to make h*)
       
   174 fun mk_Part (Bound 0) = Free(X',iT)	(*no mutual rec, no Part needed*)
       
   175   | mk_Part h         = Part_const $ Free(X',iT) $ Abs(w',iT,h);
       
   176 
       
   177 (*Access to balanced disjoint sums via injections*)
       
   178 val parts = 
       
   179     map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0) 
       
   180 		              (length rec_doms));
       
   181 
       
   182 (*replace each set by the corresponding Part(A,h)*)
       
   183 val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;
       
   184 
       
   185 val lfp_abs = absfree(X', iT, 
       
   186 	         mk_Collect(z', dom_sum, fold_bal (app disj) part_intrs));
       
   187 
       
   188 val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs
       
   189 
       
   190 val dummy = seq (fn rec_hd => deny (rec_hd occs lfp_rhs) 
       
   191 			   "Illegal occurrence of recursion operator")
       
   192 	 rec_hds;
       
   193 
       
   194 (*** Make the new theory ***)
       
   195 
       
   196 (*A key definition:
       
   197   If no mutual recursion then it equals the one recursive set.
       
   198   If mutual recursion then it differs from all the recursive sets. *)
       
   199 val big_rec_name = space_implode "_" rec_names;
    49 val big_rec_name = space_implode "_" rec_names;
   200 
    50 
   201 (*Big_rec... is the union of the mutually recursive sets*)
    51 (*fetch fp definitions from the theory*)
   202 val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
    52 val big_rec_def::part_rec_defs = 
       
    53   map (get_def thy)
       
    54       (case rec_names of [_] => rec_names | _ => big_rec_name::rec_names);
   203 
    55 
   204 (*The individual sets must already be declared*)
       
   205 val axpairs = map (mk_defpair sign) 
       
   206       ((big_rec_tm, lfp_rhs) ::
       
   207        (case parts of 
       
   208 	   [_] => [] 			(*no mutual recursion*)
       
   209 	 | _ => rec_tms ~~		(*define the sets as Parts*)
       
   210 		map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
       
   211 
    56 
   212 val thy = 
    57 val sign = sign_of thy;
   213   Ind.thy
       
   214   |> add_axioms_i axpairs
       
   215   |> add_thyname thy_name;
       
   216 
       
   217 val defs = map (get_axiom thy o #1) axpairs;
       
   218 
       
   219 val big_rec_def::part_rec_defs = defs;
       
   220 
       
   221 val prove = prove_term (sign_of thy);
       
   222 
    58 
   223 (********)
    59 (********)
   224 val dummy = writeln "Proving monotonicity...";
    60 val _ = writeln "  Proving monotonicity...";
       
    61 
       
    62 val Const("==",_) $ _ $ (_ $ dom_sum $ fp_abs) =
       
    63     big_rec_def |> rep_thm |> #prop |> unvarify;
   225 
    64 
   226 val bnd_mono = 
    65 val bnd_mono = 
   227     prove [] (mk_tprop (Fp.bnd_mono $ dom_sum $ lfp_abs), 
    66     prove_term sign [] (mk_tprop (Fp.bnd_mono $ dom_sum $ fp_abs), 
   228        fn _ =>
    67        fn _ =>
   229        [rtac (Collect_subset RS bnd_monoI) 1,
    68        [rtac (Collect_subset RS bnd_monoI) 1,
   230 	REPEAT (ares_tac (basic_monos @ monos) 1)]);
    69 	REPEAT (ares_tac (basic_monos @ monos) 1)]);
   231 
    70 
   232 val dom_subset = standard (big_rec_def RS Fp.subs);
    71 val dom_subset = standard (big_rec_def RS Fp.subs);
   233 
    72 
   234 val unfold = standard (bnd_mono RS (big_rec_def RS Fp.Tarski));
    73 val unfold = standard (bnd_mono RS (big_rec_def RS Fp.Tarski));
   235 
    74 
   236 (********)
    75 (********)
   237 val dummy = writeln "Proving the introduction rules...";
    76 val _ = writeln "  Proving the introduction rules...";
   238 
    77 
   239 (*Mutual recursion: Needs subset rules for the individual sets???*)
    78 (*Mutual recursion: Needs subset rules for the individual sets???*)
   240 val rec_typechecks = [dom_subset] RL (asm_rl::monos) RL [subsetD];
    79 val rec_typechecks = [dom_subset] RL (asm_rl::monos) RL [subsetD];
   241 
    80 
   242 (*Type-checking is hardest aspect of proof;
    81 (*Type-checking is hardest aspect of proof;
   250    rtac disjIn 2,
    89    rtac disjIn 2,
   251    REPEAT (ares_tac [refl,exI,conjI] 2),
    90    REPEAT (ares_tac [refl,exI,conjI] 2),
   252    rewrite_goals_tac con_defs,
    91    rewrite_goals_tac con_defs,
   253    (*Now can solve the trivial equation*)
    92    (*Now can solve the trivial equation*)
   254    REPEAT (rtac refl 2),
    93    REPEAT (rtac refl 2),
   255    REPEAT (FIRSTGOAL (eresolve_tac (asm_rl::PartE::SigmaE2::type_elims)
    94    REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
   256 		      ORELSE' hyp_subst_tac
    95 		      ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2::type_elims)
   257 		      ORELSE' dresolve_tac rec_typechecks)),
    96 		      ORELSE' hyp_subst_tac)),
   258    DEPTH_SOLVE (swap_res_tac (SigmaI::type_intrs) 1)];
    97    DEPTH_SOLVE (swap_res_tac (SigmaI::type_intrs) 1)];
   259 
    98 
   260 (*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)
    99 (*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)
   261 val mk_disj_rls = 
   100 val mk_disj_rls = 
   262     let fun f rl = rl RS disjI1
   101     let fun f rl = rl RS disjI1
   263         and g rl = rl RS disjI2
   102 	and g rl = rl RS disjI2
   264     in  accesses_bal(f, g, asm_rl)  end;
   103     in  accesses_bal(f, g, asm_rl)  end;
   265 
   104 
   266 val intrs = map (prove part_rec_defs) 
   105 val intrs = map (prove_term sign part_rec_defs) 
   267 	       (intr_tms ~~ map intro_tacsf (mk_disj_rls(length intr_tms)));
   106 	       (intr_tms ~~ map intro_tacsf (mk_disj_rls(length intr_tms)));
   268 
   107 
   269 (********)
   108 (********)
   270 val dummy = writeln "Proving the elimination rule...";
   109 val _ = writeln "  Proving the elimination rule...";
   271 
   110 
   272 (*Includes rules for succ and Pair since they are common constructions*)
   111 (*Includes rules for succ and Pair since they are common constructions*)
   273 val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, 
   112 val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, 
   274 		Pair_neq_0, sym RS Pair_neq_0, make_elim succ_inject, 
   113 		Pair_neq_0, sym RS Pair_neq_0, make_elim succ_inject, 
   275 		refl_thin, conjE, exE, disjE];
   114 		refl_thin, conjE, exE, disjE];
   276 
   115 
   277 val sumprod_free_SEs = 
   116 val sumprod_free_SEs = 
   278     map (gen_make_elim [conjE,FalseE])
   117     map (gen_make_elim [conjE,FalseE])
   279         ([Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff] 
   118 	([Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff] 
   280 	 RL [iffD1]);
   119 	 RL [iffD1]);
   281 
   120 
   282 (*Breaks down logical connectives in the monotonic function*)
   121 (*Breaks down logical connectives in the monotonic function*)
   283 val basic_elim_tac =
   122 val basic_elim_tac =
   284     REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs)
   123     REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs)
   285               ORELSE' bound_hyp_subst_tac))
   124 	      ORELSE' bound_hyp_subst_tac))
   286     THEN prune_params_tac;
   125     THEN prune_params_tac;
   287 
   126 
   288 val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD);
   127 val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD);
   289 
   128 
   290 (*Applies freeness of the given constructors, which *must* be unfolded by
   129 (*Applies freeness of the given constructors, which *must* be unfolded by
   299       (assume_read thy s  RS  elim);
   138       (assume_read thy s  RS  elim);
   300 
   139 
   301 val defs = big_rec_def::part_rec_defs;
   140 val defs = big_rec_def::part_rec_defs;
   302 
   141 
   303 val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct);
   142 val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct);
       
   143 end;
   304 
   144 
   305 end;