src/HOL/Analysis/Function_Topology.thy
changeset 78325 19c617950a8e
parent 78320 eb9a9690b8f5
child 78336 6bae28577994
equal deleted inserted replaced
78319:5f78a7e98bd0 78325:19c617950a8e
   488     using * \<open>J \<subseteq> I\<close> by auto
   488     using * \<open>J \<subseteq> I\<close> by auto
   489   also have "openin T1 (...)"
   489   also have "openin T1 (...)"
   490     using H(2) \<open>J \<subseteq> I\<close> \<open>finite J\<close> assms(1) by blast
   490     using H(2) \<open>J \<subseteq> I\<close> \<open>finite J\<close> assms(1) by blast
   491   ultimately show "openin T1 (f-`U \<inter> topspace T1)" by simp
   491   ultimately show "openin T1 (f-`U \<inter> topspace T1)" by simp
   492 next
   492 next
   493   have "f ` topspace T1 \<subseteq> topspace (product_topology T I)"
   493   have "f \<in> topspace T1 \<rightarrow> topspace (product_topology T I)"
   494     using assms continuous_map_def by fastforce
   494     using assms continuous_map_funspace by (force simp: Pi_iff)
   495   then show "f `topspace T1 \<subseteq> \<Union>{Pi\<^sub>E I X |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
   495   then show "f `topspace T1 \<subseteq> \<Union>{Pi\<^sub>E I X |X. (\<forall>i. openin (T i) (X i)) \<and> finite {i. X i \<noteq> topspace (T i)}}"
   496     by (simp add: product_topology_def)
   496     by (fastforce simp add: product_topology_def Pi_iff)
   497 qed
   497 qed
   498 
   498 
   499 lemma continuous_map_product_then_coordinatewise [intro]:
   499 lemma continuous_map_product_then_coordinatewise [intro]:
   500   assumes "continuous_map T1 (product_topology T I) f"
   500   assumes "continuous_map T1 (product_topology T I) f"
   501   shows "\<And>i. i \<in> I \<Longrightarrow> continuous_map T1 (T i) (\<lambda>x. f x i)"
   501   shows "\<And>i. i \<in> I \<Longrightarrow> continuous_map T1 (T i) (\<lambda>x. f x i)"