src/HOL/UNITY/FP.ML
changeset 13796 19f50fa807ae
parent 13795 cfa3441c5238
child 13797 baefae13ad37
equal deleted inserted replaced
13795:cfa3441c5238 13796:19f50fa807ae
     1 (*  Title:      HOL/UNITY/FP
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1998  University of Cambridge
       
     5 
       
     6 Fixed Point of a Program
       
     7 
       
     8 From Misra, "A Logic for Concurrent Programming", 1994
       
     9 *)
       
    10 
       
    11 Goalw [FP_Orig_def, stable_def] "F : stable (FP_Orig F Int B)";
       
    12 by (stac Int_Union2 1);
       
    13 by (blast_tac (claset() addIs [constrains_UN]) 1);
       
    14 qed "stable_FP_Orig_Int";
       
    15 
       
    16 
       
    17 val prems = goalw thy [FP_Orig_def, stable_def]
       
    18     "(!!B. F : stable (A Int B)) ==> A <= FP_Orig F";
       
    19 by (blast_tac (claset() addIs prems) 1);
       
    20 qed "FP_Orig_weakest";
       
    21 
       
    22 
       
    23 Goal "F : stable (FP F Int B)";
       
    24 by (subgoal_tac "FP F Int B = (UN x:B. FP F Int {x})" 1);
       
    25 by (Blast_tac 2);
       
    26 by (asm_simp_tac (simpset() addsimps [Int_insert_right]) 1);
       
    27 by (rewrite_goals_tac [FP_def, stable_def]);
       
    28 by (rtac constrains_UN 1);
       
    29 by (Simp_tac 1);
       
    30 qed "stable_FP_Int";
       
    31 
       
    32 Goal "FP F <= FP_Orig F";
       
    33 by (rtac (stable_FP_Int RS FP_Orig_weakest) 1);
       
    34 val lemma1 = result();
       
    35 
       
    36 Goalw [FP_Orig_def, FP_def] "FP_Orig F <= FP F";
       
    37 by (Clarify_tac 1);
       
    38 by (dres_inst_tac [("x", "{x}")] spec 1);
       
    39 by (asm_full_simp_tac (simpset() addsimps [Int_insert_right]) 1);
       
    40 val lemma2 = result();
       
    41 
       
    42 Goal "FP F = FP_Orig F";
       
    43 by (rtac ([lemma1,lemma2] MRS equalityI) 1);
       
    44 qed "FP_equivalence";
       
    45 
       
    46 val [prem] = goal thy
       
    47     "(!!B. F : stable (A Int B)) ==> A <= FP F";
       
    48 by (simp_tac (simpset() addsimps [FP_equivalence, prem RS FP_Orig_weakest]) 1);
       
    49 qed "FP_weakest";
       
    50 
       
    51 Goalw [FP_def, stable_def, constrains_def]
       
    52     "-(FP F) = (UN act: Acts F. -{s. act``{s} <= {s}})";
       
    53 by (Blast_tac 1);
       
    54 qed "Compl_FP";
       
    55 
       
    56 Goal "A - (FP F) = (UN act: Acts F. A - {s. act``{s} <= {s}})";
       
    57 by (simp_tac (simpset() addsimps [Diff_eq, Compl_FP]) 1);
       
    58 qed "Diff_FP";
       
    59