src/HOL/UNITY/Follows.thy
changeset 13796 19f50fa807ae
parent 10265 4e004b548049
child 13798 4c1a53627500
equal deleted inserted replaced
13795:cfa3441c5238 13796:19f50fa807ae
     4     Copyright   1998  University of Cambridge
     4     Copyright   1998  University of Cambridge
     5 
     5 
     6 The "Follows" relation of Charpentier and Sivilotte
     6 The "Follows" relation of Charpentier and Sivilotte
     7 *)
     7 *)
     8 
     8 
     9 Follows = SubstAx + ListOrder + Multiset +
     9 theory Follows = SubstAx + ListOrder + Multiset:
    10 
    10 
    11 constdefs
    11 constdefs
    12 
    12 
    13   Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set"
    13   Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set"
    14                  (infixl "Fols" 65)
    14                  (infixl "Fols" 65)
    15    "f Fols g == Increasing g Int Increasing f Int
    15    "f Fols g == Increasing g Int Increasing f Int
    16                 Always {s. f s <= g s} Int
    16                 Always {s. f s <= g s} Int
    17                 (INT k. {s. k <= g s} LeadsTo {s. k <= f s})"
    17                 (INT k. {s. k <= g s} LeadsTo {s. k <= f s})"
    18 
    18 
    19 
    19 
       
    20 (*Does this hold for "invariant"?*)
       
    21 lemma mono_Always_o:
       
    22      "mono h ==> Always {s. f s <= g s} <= Always {s. h (f s) <= h (g s)}"
       
    23 apply (simp add: Always_eq_includes_reachable)
       
    24 apply (blast intro: monoD)
       
    25 done
       
    26 
       
    27 lemma mono_LeadsTo_o:
       
    28      "mono (h::'a::order => 'b::order)  
       
    29       ==> (INT j. {s. j <= g s} LeadsTo {s. j <= f s}) <=  
       
    30           (INT k. {s. k <= h (g s)} LeadsTo {s. k <= h (f s)})"
       
    31 apply auto
       
    32 apply (rule single_LeadsTo_I)
       
    33 apply (drule_tac x = "g s" in spec)
       
    34 apply (erule LeadsTo_weaken)
       
    35 apply (blast intro: monoD order_trans)+
       
    36 done
       
    37 
       
    38 lemma Follows_constant: "F : (%s. c) Fols (%s. c)"
       
    39 by (unfold Follows_def, auto)
       
    40 declare Follows_constant [iff]
       
    41 
       
    42 lemma mono_Follows_o: "mono h ==> f Fols g <= (h o f) Fols (h o g)"
       
    43 apply (unfold Follows_def, clarify)
       
    44 apply (simp add: mono_Increasing_o [THEN [2] rev_subsetD]
       
    45                  mono_Always_o [THEN [2] rev_subsetD]
       
    46                  mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D])
       
    47 done
       
    48 
       
    49 lemma mono_Follows_apply:
       
    50      "mono h ==> f Fols g <= (%x. h (f x)) Fols (%x. h (g x))"
       
    51 apply (drule mono_Follows_o)
       
    52 apply (force simp add: o_def)
       
    53 done
       
    54 
       
    55 lemma Follows_trans: 
       
    56      "[| F : f Fols g;  F: g Fols h |] ==> F : f Fols h"
       
    57 apply (unfold Follows_def)
       
    58 apply (simp add: Always_eq_includes_reachable)
       
    59 apply (blast intro: order_trans LeadsTo_Trans)
       
    60 done
       
    61 
       
    62 
       
    63 (** Destructiom rules **)
       
    64 
       
    65 lemma Follows_Increasing1: 
       
    66      "F : f Fols g ==> F : Increasing f"
       
    67 
       
    68 apply (unfold Follows_def, blast)
       
    69 done
       
    70 
       
    71 lemma Follows_Increasing2: 
       
    72      "F : f Fols g ==> F : Increasing g"
       
    73 apply (unfold Follows_def, blast)
       
    74 done
       
    75 
       
    76 lemma Follows_Bounded: 
       
    77      "F : f Fols g ==> F : Always {s. f s <= g s}"
       
    78 apply (unfold Follows_def, blast)
       
    79 done
       
    80 
       
    81 lemma Follows_LeadsTo: 
       
    82      "F : f Fols g ==> F : {s. k <= g s} LeadsTo {s. k <= f s}"
       
    83 apply (unfold Follows_def, blast)
       
    84 done
       
    85 
       
    86 lemma Follows_LeadsTo_pfixLe:
       
    87      "F : f Fols g ==> F : {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}"
       
    88 apply (rule single_LeadsTo_I, clarify)
       
    89 apply (drule_tac k="g s" in Follows_LeadsTo)
       
    90 apply (erule LeadsTo_weaken)
       
    91  apply blast 
       
    92 apply (blast intro: pfixLe_trans prefix_imp_pfixLe)
       
    93 done
       
    94 
       
    95 lemma Follows_LeadsTo_pfixGe:
       
    96      "F : f Fols g ==> F : {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}"
       
    97 apply (rule single_LeadsTo_I, clarify)
       
    98 apply (drule_tac k="g s" in Follows_LeadsTo)
       
    99 apply (erule LeadsTo_weaken)
       
   100  apply blast 
       
   101 apply (blast intro: pfixGe_trans prefix_imp_pfixGe)
       
   102 done
       
   103 
       
   104 
       
   105 lemma Always_Follows1: 
       
   106      "[| F : Always {s. f s = f' s}; F : f Fols g |] ==> F : f' Fols g"
       
   107 
       
   108 apply (unfold Follows_def Increasing_def Stable_def, auto)
       
   109 apply (erule_tac [3] Always_LeadsTo_weaken)
       
   110 apply (erule_tac A = "{s. z <= f s}" and A' = "{s. z <= f s}" in Always_Constrains_weaken, auto)
       
   111 apply (drule Always_Int_I, assumption)
       
   112 apply (force intro: Always_weaken)
       
   113 done
       
   114 
       
   115 lemma Always_Follows2: 
       
   116      "[| F : Always {s. g s = g' s}; F : f Fols g |] ==> F : f Fols g'"
       
   117 apply (unfold Follows_def Increasing_def Stable_def, auto)
       
   118 apply (erule_tac [3] Always_LeadsTo_weaken)
       
   119 apply (erule_tac A = "{s. z <= g s}" and A' = "{s. z <= g s}" in Always_Constrains_weaken, auto)
       
   120 apply (drule Always_Int_I, assumption)
       
   121 apply (force intro: Always_weaken)
       
   122 done
       
   123 
       
   124 
       
   125 (** Union properties (with the subset ordering) **)
       
   126 
       
   127 (*Can replace "Un" by any sup.  But existing max only works for linorders.*)
       
   128 lemma increasing_Un: 
       
   129     "[| F : increasing f;  F: increasing g |]  
       
   130      ==> F : increasing (%s. (f s) Un (g s))"
       
   131 apply (unfold increasing_def stable_def constrains_def, auto)
       
   132 apply (drule_tac x = "f xa" in spec)
       
   133 apply (drule_tac x = "g xa" in spec)
       
   134 apply (blast dest!: bspec)
       
   135 done
       
   136 
       
   137 lemma Increasing_Un: 
       
   138     "[| F : Increasing f;  F: Increasing g |]  
       
   139      ==> F : Increasing (%s. (f s) Un (g s))"
       
   140 apply (unfold Increasing_def Stable_def Constrains_def stable_def constrains_def, auto)
       
   141 apply (drule_tac x = "f xa" in spec)
       
   142 apply (drule_tac x = "g xa" in spec)
       
   143 apply (blast dest!: bspec)
       
   144 done
       
   145 
       
   146 
       
   147 lemma Always_Un:
       
   148      "[| F : Always {s. f' s <= f s}; F : Always {s. g' s <= g s} |]  
       
   149       ==> F : Always {s. f' s Un g' s <= f s Un g s}"
       
   150 apply (simp add: Always_eq_includes_reachable, blast)
       
   151 done
       
   152 
       
   153 (*Lemma to re-use the argument that one variable increases (progress)
       
   154   while the other variable doesn't decrease (safety)*)
       
   155 lemma Follows_Un_lemma:
       
   156      "[| F : Increasing f; F : Increasing g;  
       
   157          F : Increasing g'; F : Always {s. f' s <= f s}; 
       
   158          ALL k. F : {s. k <= f s} LeadsTo {s. k <= f' s} |] 
       
   159       ==> F : {s. k <= f s Un g s} LeadsTo {s. k <= f' s Un g s}"
       
   160 apply (rule single_LeadsTo_I)
       
   161 apply (drule_tac x = "f s" in IncreasingD)
       
   162 apply (drule_tac x = "g s" in IncreasingD)
       
   163 apply (rule LeadsTo_weaken)
       
   164 apply (rule PSP_Stable)
       
   165 apply (erule_tac x = "f s" in spec)
       
   166 apply (erule Stable_Int, assumption)
       
   167 apply blast
       
   168 apply blast
       
   169 done
       
   170 
       
   171 lemma Follows_Un: 
       
   172     "[| F : f' Fols f;  F: g' Fols g |]  
       
   173      ==> F : (%s. (f' s) Un (g' s)) Fols (%s. (f s) Un (g s))"
       
   174 apply (unfold Follows_def)
       
   175 apply (simp add: Increasing_Un Always_Un, auto)
       
   176 apply (rule LeadsTo_Trans)
       
   177 apply (blast intro: Follows_Un_lemma)
       
   178 (*Weakening is used to exchange Un's arguments*)
       
   179 apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken])
       
   180 done
       
   181 
       
   182 
       
   183 (** Multiset union properties (with the multiset ordering) **)
       
   184 
       
   185 lemma increasing_union: 
       
   186     "[| F : increasing f;  F: increasing g |]  
       
   187      ==> F : increasing (%s. (f s) + (g s :: ('a::order) multiset))"
       
   188 
       
   189 apply (unfold increasing_def stable_def constrains_def, auto)
       
   190 apply (drule_tac x = "f xa" in spec)
       
   191 apply (drule_tac x = "g xa" in spec)
       
   192 apply (drule bspec, assumption) 
       
   193 apply (blast intro: union_le_mono order_trans)
       
   194 done
       
   195 
       
   196 lemma Increasing_union: 
       
   197     "[| F : Increasing f;  F: Increasing g |]  
       
   198      ==> F : Increasing (%s. (f s) + (g s :: ('a::order) multiset))"
       
   199 apply (unfold Increasing_def Stable_def Constrains_def stable_def constrains_def, auto)
       
   200 apply (drule_tac x = "f xa" in spec)
       
   201 apply (drule_tac x = "g xa" in spec)
       
   202 apply (drule bspec, assumption) 
       
   203 apply (blast intro: union_le_mono order_trans)
       
   204 done
       
   205 
       
   206 lemma Always_union:
       
   207      "[| F : Always {s. f' s <= f s}; F : Always {s. g' s <= g s} |]  
       
   208       ==> F : Always {s. f' s + g' s <= f s + (g s :: ('a::order) multiset)}"
       
   209 apply (simp add: Always_eq_includes_reachable)
       
   210 apply (blast intro: union_le_mono)
       
   211 done
       
   212 
       
   213 (*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*)
       
   214 lemma Follows_union_lemma:
       
   215      "[| F : Increasing f; F : Increasing g;  
       
   216          F : Increasing g'; F : Always {s. f' s <= f s}; 
       
   217          ALL k::('a::order) multiset.  
       
   218            F : {s. k <= f s} LeadsTo {s. k <= f' s} |] 
       
   219       ==> F : {s. k <= f s + g s} LeadsTo {s. k <= f' s + g s}"
       
   220 apply (rule single_LeadsTo_I)
       
   221 apply (drule_tac x = "f s" in IncreasingD)
       
   222 apply (drule_tac x = "g s" in IncreasingD)
       
   223 apply (rule LeadsTo_weaken)
       
   224 apply (rule PSP_Stable)
       
   225 apply (erule_tac x = "f s" in spec)
       
   226 apply (erule Stable_Int, assumption)
       
   227 apply blast
       
   228 apply (blast intro: union_le_mono order_trans)
       
   229 done
       
   230 
       
   231 (*The !! is there to influence to effect of permutative rewriting at the end*)
       
   232 lemma Follows_union: 
       
   233      "!!g g' ::'b => ('a::order) multiset.  
       
   234         [| F : f' Fols f;  F: g' Fols g |]  
       
   235         ==> F : (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))"
       
   236 apply (unfold Follows_def)
       
   237 apply (simp add: Increasing_union Always_union, auto)
       
   238 apply (rule LeadsTo_Trans)
       
   239 apply (blast intro: Follows_union_lemma)
       
   240 (*now exchange union's arguments*)
       
   241 apply (simp add: union_commute)
       
   242 apply (blast intro: Follows_union_lemma)
       
   243 done
       
   244 
       
   245 lemma Follows_setsum:
       
   246      "!!f ::['c,'b] => ('a::order) multiset.  
       
   247         [| ALL i: I. F : f' i Fols f i;  finite I |]  
       
   248         ==> F : (%s. \<Sum>i:I. f' i s) Fols (%s. \<Sum>i:I. f i s)"
       
   249 apply (erule rev_mp)
       
   250 apply (erule finite_induct, simp) 
       
   251 apply (simp add: Follows_union)
       
   252 done
       
   253 
       
   254 
       
   255 (*Currently UNUSED, but possibly of interest*)
       
   256 lemma Increasing_imp_Stable_pfixGe:
       
   257      "F : Increasing func ==> F : Stable {s. h pfixGe (func s)}"
       
   258 apply (simp add: Increasing_def Stable_def Constrains_def constrains_def)
       
   259 apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] 
       
   260                     prefix_imp_pfixGe)
       
   261 done
       
   262 
       
   263 (*Currently UNUSED, but possibly of interest*)
       
   264 lemma LeadsTo_le_imp_pfixGe:
       
   265      "ALL z. F : {s. z <= f s} LeadsTo {s. z <= g s}  
       
   266       ==> F : {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}"
       
   267 apply (rule single_LeadsTo_I)
       
   268 apply (drule_tac x = "f s" in spec)
       
   269 apply (erule LeadsTo_weaken)
       
   270  prefer 2
       
   271  apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] 
       
   272                      prefix_imp_pfixGe, blast)
       
   273 done
       
   274 
    20 end
   275 end