src/HOL/NthRoot.thy
changeset 62131 1baed43f453e
parent 61973 0c7e865fa7cb
child 62347 2230b7047376
equal deleted inserted replaced
62128:3201ddb00097 62131:1baed43f453e
   422 lemma real_le_rsqrt: "x\<^sup>2 \<le> y \<Longrightarrow> x \<le> sqrt y"
   422 lemma real_le_rsqrt: "x\<^sup>2 \<le> y \<Longrightarrow> x \<le> sqrt y"
   423   using real_sqrt_le_mono[of "x\<^sup>2" y] by simp
   423   using real_sqrt_le_mono[of "x\<^sup>2" y] by simp
   424 
   424 
   425 lemma real_less_rsqrt: "x\<^sup>2 < y \<Longrightarrow> x < sqrt y"
   425 lemma real_less_rsqrt: "x\<^sup>2 < y \<Longrightarrow> x < sqrt y"
   426   using real_sqrt_less_mono[of "x\<^sup>2" y] by simp
   426   using real_sqrt_less_mono[of "x\<^sup>2" y] by simp
       
   427 
       
   428 lemma sqrt_le_D: "sqrt x \<le> y \<Longrightarrow> x \<le> y^2"
       
   429   by (meson not_le real_less_rsqrt)
   427 
   430 
   428 lemma sqrt_even_pow2:
   431 lemma sqrt_even_pow2:
   429   assumes n: "even n"
   432   assumes n: "even n"
   430   shows "sqrt (2 ^ n) = 2 ^ (n div 2)"
   433   shows "sqrt (2 ^ n) = 2 ^ (n div 2)"
   431 proof -
   434 proof -