equal
deleted
inserted
replaced
422 lemma real_le_rsqrt: "x\<^sup>2 \<le> y \<Longrightarrow> x \<le> sqrt y" |
422 lemma real_le_rsqrt: "x\<^sup>2 \<le> y \<Longrightarrow> x \<le> sqrt y" |
423 using real_sqrt_le_mono[of "x\<^sup>2" y] by simp |
423 using real_sqrt_le_mono[of "x\<^sup>2" y] by simp |
424 |
424 |
425 lemma real_less_rsqrt: "x\<^sup>2 < y \<Longrightarrow> x < sqrt y" |
425 lemma real_less_rsqrt: "x\<^sup>2 < y \<Longrightarrow> x < sqrt y" |
426 using real_sqrt_less_mono[of "x\<^sup>2" y] by simp |
426 using real_sqrt_less_mono[of "x\<^sup>2" y] by simp |
|
427 |
|
428 lemma sqrt_le_D: "sqrt x \<le> y \<Longrightarrow> x \<le> y^2" |
|
429 by (meson not_le real_less_rsqrt) |
427 |
430 |
428 lemma sqrt_even_pow2: |
431 lemma sqrt_even_pow2: |
429 assumes n: "even n" |
432 assumes n: "even n" |
430 shows "sqrt (2 ^ n) = 2 ^ (n div 2)" |
433 shows "sqrt (2 ^ n) = 2 ^ (n div 2)" |
431 proof - |
434 proof - |