equal
deleted
inserted
replaced
45 "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (emb I J X) = PiM J M X" |
45 "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (emb I J X) = PiM J M X" |
46 by (subst distr_PiM_restrict_finite[symmetric, of J]) |
46 by (subst distr_PiM_restrict_finite[symmetric, of J]) |
47 (auto intro!: emeasure_distr_restrict[symmetric]) |
47 (auto intro!: emeasure_distr_restrict[symmetric]) |
48 |
48 |
49 lemma (in product_prob_space) emeasure_PiM_emb: |
49 lemma (in product_prob_space) emeasure_PiM_emb: |
50 "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow> |
50 "J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow> |
51 emeasure (Pi\<^sub>M I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. emeasure (M i) (X i))" |
51 emeasure (Pi\<^sub>M I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. emeasure (M i) (X i))" |
52 by (subst emeasure_PiM_emb') (auto intro!: emeasure_PiM) |
52 by (subst emeasure_PiM_emb') (auto intro!: emeasure_PiM) |
53 |
53 |
54 sublocale product_prob_space \<subseteq> P?: prob_space "Pi\<^sub>M I M" |
54 sublocale product_prob_space \<subseteq> P?: prob_space "Pi\<^sub>M I M" |
55 proof |
55 proof |
76 |
76 |
77 lemma (in product_prob_space) measure_PiM_emb: |
77 lemma (in product_prob_space) measure_PiM_emb: |
78 assumes "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)" |
78 assumes "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)" |
79 shows "measure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. measure (M i) (X i))" |
79 shows "measure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. measure (M i) (X i))" |
80 using emeasure_PiM_emb[OF assms] |
80 using emeasure_PiM_emb[OF assms] |
81 unfolding emeasure_eq_measure M.emeasure_eq_measure by (simp add: setprod_ereal) |
81 unfolding emeasure_eq_measure M.emeasure_eq_measure |
|
82 by (simp add: setprod_ennreal measure_nonneg setprod_nonneg) |
82 |
83 |
83 lemma sets_Collect_single': |
84 lemma sets_Collect_single': |
84 "i \<in> I \<Longrightarrow> {x\<in>space (M i). P x} \<in> sets (M i) \<Longrightarrow> {x\<in>space (PiM I M). P (x i)} \<in> sets (PiM I M)" |
85 "i \<in> I \<Longrightarrow> {x\<in>space (M i). P x} \<in> sets (M i) \<Longrightarrow> {x\<in>space (PiM I M). P (x i)} \<in> sets (PiM I M)" |
85 using sets_Collect_single[of i I "{x\<in>space (M i). P x}" M] |
86 using sets_Collect_single[of i I "{x\<in>space (M i). P x}" M] |
86 by (simp add: space_PiM PiE_iff cong: conj_cong) |
87 by (simp add: space_PiM PiE_iff cong: conj_cong) |
201 by (auto simp: prod_emb_def Pi_iff decseq_def) |
202 by (auto simp: prod_emb_def Pi_iff decseq_def) |
202 ultimately show ?thesis |
203 ultimately show ?thesis |
203 by (simp add: finite_Lim_measure_decseq) |
204 by (simp add: finite_Lim_measure_decseq) |
204 qed |
205 qed |
205 |
206 |
206 lemma nat_eq_diff_eq: |
207 lemma nat_eq_diff_eq: |
207 fixes a b c :: nat |
208 fixes a b c :: nat |
208 shows "c \<le> b \<Longrightarrow> a = b - c \<longleftrightarrow> a + c = b" |
209 shows "c \<le> b \<Longrightarrow> a = b - c \<longleftrightarrow> a + c = b" |
209 by auto |
210 by auto |
210 |
211 |
211 lemma PiM_comb_seq: |
212 lemma PiM_comb_seq: |