src/HOL/Library/Kleene_Algebra.thy
changeset 31990 1d4d0b305f16
child 32238 74ae5e9f312c
equal deleted inserted replaced
31989:a290c36e94d6 31990:1d4d0b305f16
       
     1 (*  Title:      HOL/Library/Kleene_Algebra.thy
       
     2     Author:     Alexander Krauss, TU Muenchen
       
     3 *)
       
     4 
       
     5 header "Kleene Algebra"
       
     6 
       
     7 theory Kleene_Algebra
       
     8 imports Main 
       
     9 begin
       
    10 
       
    11 text {* WARNING: This is work in progress. Expect changes in the future *}
       
    12 
       
    13 text {* A type class of Kleene algebras *}
       
    14 
       
    15 class star =
       
    16   fixes star :: "'a \<Rightarrow> 'a"
       
    17 
       
    18 class idem_add = ab_semigroup_add +
       
    19   assumes add_idem [simp]: "x + x = x"
       
    20 begin
       
    21 
       
    22 lemma add_idem2[simp]: "(x::'a) + (x + y) = x + y"
       
    23 unfolding add_assoc[symmetric] by simp
       
    24 
       
    25 end
       
    26 
       
    27 class order_by_add = idem_add + ord +
       
    28   assumes order_def: "a \<le> b \<longleftrightarrow> a + b = b"
       
    29   assumes strict_order_def: "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
       
    30 begin
       
    31 
       
    32 lemma ord_simp1[simp]: "x \<le> y \<Longrightarrow> x + y = y"
       
    33   unfolding order_def .
       
    34 
       
    35 lemma ord_simp2[simp]: "x \<le> y \<Longrightarrow> y + x = y"
       
    36   unfolding order_def add_commute .
       
    37 
       
    38 lemma ord_intro: "x + y = y \<Longrightarrow> x \<le> y"
       
    39   unfolding order_def .
       
    40 
       
    41 subclass order proof
       
    42   fix x y z :: 'a
       
    43   show "x \<le> x" unfolding order_def by simp
       
    44   show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
       
    45   proof (rule ord_intro)
       
    46     assume "x \<le> y" "y \<le> z"
       
    47     have "x + z = x + y + z" by (simp add:`y \<le> z` add_assoc)
       
    48     also have "\<dots> = y + z" by (simp add:`x \<le> y`)
       
    49     also have "\<dots> = z" by (simp add:`y \<le> z`)
       
    50     finally show "x + z = z" .
       
    51   qed
       
    52   show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" unfolding order_def
       
    53     by (simp add: add_commute)
       
    54   show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" by (fact strict_order_def)
       
    55 qed
       
    56 
       
    57 lemma plus_leI: 
       
    58   "x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z"
       
    59   unfolding order_def by (simp add: add_assoc)
       
    60 
       
    61 lemma less_add[simp]: "a \<le> a + b" "b \<le> a + b"
       
    62 unfolding order_def by (auto simp:add_ac)
       
    63 
       
    64 lemma add_est1: "a + b \<le> c \<Longrightarrow> a \<le> c"
       
    65 using less_add(1) by (rule order_trans)
       
    66 
       
    67 lemma add_est2: "a + b \<le> c \<Longrightarrow> b \<le> c"
       
    68 using less_add(2) by (rule order_trans)
       
    69 
       
    70 end
       
    71 
       
    72 class pre_kleene = semiring_1 + order_by_add
       
    73 begin
       
    74 
       
    75 subclass pordered_semiring proof
       
    76   fix x y z :: 'a
       
    77 
       
    78   assume "x \<le> y"
       
    79    
       
    80   show "z + x \<le> z + y"
       
    81   proof (rule ord_intro)
       
    82     have "z + x + (z + y) = x + y + z" by (simp add:add_ac)
       
    83     also have "\<dots> = z + y" by (simp add:`x \<le> y` add_ac)
       
    84     finally show "z + x + (z + y) = z + y" .
       
    85   qed
       
    86 
       
    87   show "z * x \<le> z * y"
       
    88   proof (rule ord_intro)
       
    89     from `x \<le> y` have "z * (x + y) = z * y" by simp
       
    90     thus "z * x + z * y = z * y" by (simp add:right_distrib)
       
    91   qed
       
    92 
       
    93   show "x * z \<le> y * z"
       
    94   proof (rule ord_intro)
       
    95     from `x \<le> y` have "(x + y) * z = y * z" by simp
       
    96     thus "x * z + y * z = y * z" by (simp add:left_distrib)
       
    97   qed
       
    98 qed
       
    99 
       
   100 lemma zero_minimum [simp]: "0 \<le> x"
       
   101   unfolding order_def by simp
       
   102 
       
   103 end
       
   104 
       
   105 class kleene = pre_kleene + star +
       
   106   assumes star1: "1 + a * star a \<le> star a"
       
   107   and star2: "1 + star a * a \<le> star a"
       
   108   and star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
       
   109   and star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x"
       
   110 begin
       
   111 
       
   112 lemma star3':
       
   113   assumes a: "b + a * x \<le> x"
       
   114   shows "star a * b \<le> x"
       
   115 proof (rule order_trans)
       
   116   from a have "b \<le> x" by (rule add_est1)
       
   117   show "star a * b \<le> star a * x"
       
   118     by (rule mult_mono) (auto simp:`b \<le> x`)
       
   119 
       
   120   from a have "a * x \<le> x" by (rule add_est2)
       
   121   with star3 show "star a * x \<le> x" .
       
   122 qed
       
   123 
       
   124 lemma star4':
       
   125   assumes a: "b + x * a \<le> x"
       
   126   shows "b * star a \<le> x"
       
   127 proof (rule order_trans)
       
   128   from a have "b \<le> x" by (rule add_est1)
       
   129   show "b * star a \<le> x * star a"
       
   130     by (rule mult_mono) (auto simp:`b \<le> x`)
       
   131 
       
   132   from a have "x * a \<le> x" by (rule add_est2)
       
   133   with star4 show "x * star a \<le> x" .
       
   134 qed
       
   135 
       
   136 lemma star_unfold_left:
       
   137   shows "1 + a * star a = star a"
       
   138 proof (rule antisym, rule star1)
       
   139   have "1 + a * (1 + a * star a) \<le> 1 + a * star a"
       
   140     apply (rule add_mono, rule)
       
   141     apply (rule mult_mono, auto)
       
   142     apply (rule star1)
       
   143     done
       
   144   with star3' have "star a * 1 \<le> 1 + a * star a" .
       
   145   thus "star a \<le> 1 + a * star a" by simp
       
   146 qed
       
   147 
       
   148 lemma star_unfold_right: "1 + star a * a = star a"
       
   149 proof (rule antisym, rule star2)
       
   150   have "1 + (1 + star a * a) * a \<le> 1 + star a * a"
       
   151     apply (rule add_mono, rule)
       
   152     apply (rule mult_mono, auto)
       
   153     apply (rule star2)
       
   154     done
       
   155   with star4' have "1 * star a \<le> 1 + star a * a" .
       
   156   thus "star a \<le> 1 + star a * a" by simp
       
   157 qed
       
   158 
       
   159 lemma star_zero[simp]: "star 0 = 1"
       
   160 by (fact star_unfold_left[of 0, simplified, symmetric])
       
   161 
       
   162 lemma star_one[simp]: "star 1 = 1"
       
   163 by (metis add_idem2 eq_iff mult_1_right ord_simp2 star3 star_unfold_left)
       
   164 
       
   165 lemma one_less_star: "1 \<le> star x"
       
   166 by (metis less_add(1) star_unfold_left)
       
   167 
       
   168 lemma ka1: "x * star x \<le> star x"
       
   169 by (metis less_add(2) star_unfold_left)
       
   170 
       
   171 lemma star_mult_idem[simp]: "star x * star x = star x"
       
   172 by (metis add_commute add_est1 eq_iff mult_1_right right_distrib star3 star_unfold_left)
       
   173 
       
   174 lemma less_star: "x \<le> star x"
       
   175 by (metis less_add(2) mult_1_right mult_left_mono one_less_star order_trans star_unfold_left zero_minimum)
       
   176 
       
   177 lemma star_simulation:
       
   178   assumes a: "a * x = x * b"
       
   179   shows "star a * x = x * star b"
       
   180 proof (rule antisym)
       
   181   show "star a * x \<le> x * star b"
       
   182   proof (rule star3', rule order_trans)
       
   183     from a have "a * x \<le> x * b" by simp
       
   184     hence "a * x * star b \<le> x * b * star b"
       
   185       by (rule mult_mono) auto
       
   186     thus "x + a * (x * star b) \<le> x + x * b * star b"
       
   187       using add_mono by (auto simp: mult_assoc)
       
   188     show "\<dots> \<le> x * star b"
       
   189     proof -
       
   190       have "x * (1 + b * star b) \<le> x * star b"
       
   191         by (rule mult_mono[OF _ star1]) auto
       
   192       thus ?thesis
       
   193         by (simp add:right_distrib mult_assoc)
       
   194     qed
       
   195   qed
       
   196   show "x * star b \<le> star a * x"
       
   197   proof (rule star4', rule order_trans)
       
   198     from a have b: "x * b \<le> a * x" by simp
       
   199     have "star a * x * b \<le> star a * a * x"
       
   200       unfolding mult_assoc
       
   201       by (rule mult_mono[OF _ b]) auto
       
   202     thus "x + star a * x * b \<le> x + star a * a * x"
       
   203       using add_mono by auto
       
   204     show "\<dots> \<le> star a * x"
       
   205     proof -
       
   206       have "(1 + star a * a) * x \<le> star a * x"
       
   207         by (rule mult_mono[OF star2]) auto
       
   208       thus ?thesis
       
   209         by (simp add:left_distrib mult_assoc)
       
   210     qed
       
   211   qed
       
   212 qed
       
   213 
       
   214 lemma star_slide2[simp]: "star x * x = x * star x"
       
   215 by (metis star_simulation)
       
   216 
       
   217 lemma star_idemp[simp]: "star (star x) = star x"
       
   218 by (metis add_idem2 eq_iff less_star mult_1_right star3' star_mult_idem star_unfold_left)
       
   219 
       
   220 lemma star_slide[simp]: "star (x * y) * x = x * star (y * x)"
       
   221 by (auto simp: mult_assoc star_simulation)
       
   222 
       
   223 lemma star_one':
       
   224   assumes "p * p' = 1" "p' * p = 1"
       
   225   shows "p' * star a * p = star (p' * a * p)"
       
   226 proof -
       
   227   from assms
       
   228   have "p' * star a * p = p' * star (p * p' * a) * p"
       
   229     by simp
       
   230   also have "\<dots> = p' * p * star (p' * a * p)"
       
   231     by (simp add: mult_assoc)
       
   232   also have "\<dots> = star (p' * a * p)"
       
   233     by (simp add: assms)
       
   234   finally show ?thesis .
       
   235 qed
       
   236 
       
   237 lemma x_less_star[simp]: "x \<le> x * star a"
       
   238 proof -
       
   239   have "x \<le> x * (1 + a * star a)" by (simp add: right_distrib)
       
   240   also have "\<dots> = x * star a" by (simp only: star_unfold_left)
       
   241   finally show ?thesis .
       
   242 qed
       
   243 
       
   244 lemma star_mono:  "x \<le> y \<Longrightarrow>  star x \<le> star y"
       
   245 by (metis add_commute eq_iff less_star ord_simp2 order_trans star3 star4' star_idemp star_mult_idem x_less_star)
       
   246 
       
   247 lemma star_sub: "x \<le> 1 \<Longrightarrow> star x = 1"
       
   248 by (metis add_commute ord_simp1 star_idemp star_mono star_mult_idem star_one star_unfold_left)
       
   249 
       
   250 lemma star_unfold2: "star x * y = y + x * star x * y"
       
   251 by (subst star_unfold_right[symmetric]) (simp add: mult_assoc left_distrib)
       
   252 
       
   253 lemma star_absorb_one[simp]: "star (x + 1) = star x"
       
   254 by (metis add_commute eq_iff left_distrib less_add(1) less_add(2) mult_1_left mult_assoc star3 star_mono star_mult_idem star_unfold2 x_less_star)
       
   255 
       
   256 lemma star_absorb_one'[simp]: "star (1 + x) = star x"
       
   257 by (subst add_commute) (fact star_absorb_one)
       
   258 
       
   259 lemma ka16: "(y * star x) * star (y * star x) \<le> star x * star (y * star x)"
       
   260 by (metis ka1 less_add(1) mult_assoc order_trans star_unfold2)
       
   261 
       
   262 lemma ka16': "(star x * y) * star (star x * y) \<le> star (star x * y) * star x"
       
   263 by (metis ka1 mult_assoc order_trans star_slide x_less_star)
       
   264 
       
   265 lemma ka17: "(x * star x) * star (y * star x) \<le> star x * star (y * star x)"
       
   266 by (metis ka1 mult_assoc mult_right_mono zero_minimum)
       
   267 
       
   268 lemma ka18: "(x * star x) * star (y * star x) + (y * star x) * star (y * star x)
       
   269   \<le> star x * star (y * star x)"
       
   270 by (metis ka16 ka17 left_distrib mult_assoc plus_leI)
       
   271 
       
   272 lemma kleene_church_rosser: 
       
   273   "star y * star x \<le> star x * star y \<Longrightarrow> star (x + y) \<le> star x * star y"
       
   274 oops
       
   275 
       
   276 lemma star_decomp: "star (a + b) = star a * star (b * star a)"
       
   277 oops
       
   278 
       
   279 lemma ka22: "y * star x \<le> star x * star y \<Longrightarrow>  star y * star x \<le> star x * star y"
       
   280 by (metis mult_assoc mult_right_mono plus_leI star3' star_mult_idem x_less_star zero_minimum)
       
   281 
       
   282 lemma ka23: "star y * star x \<le> star x * star y \<Longrightarrow> y * star x \<le> star x * star y"
       
   283 by (metis less_star mult_right_mono order_trans zero_minimum)
       
   284 
       
   285 lemma ka24: "star (x + y) \<le> star (star x * star y)"
       
   286 by (metis add_est1 add_est2 less_add(1) mult_assoc order_def plus_leI star_absorb_one star_mono star_slide2 star_unfold2 star_unfold_left x_less_star)
       
   287 
       
   288 lemma ka25: "star y * star x \<le> star x * star y \<Longrightarrow> star (star y * star x) \<le> star x * star y"
       
   289 oops
       
   290 
       
   291 lemma kleene_bubblesort: "y * x \<le> x * y \<Longrightarrow> star (x + y) \<le> star x * star y"
       
   292 oops
       
   293 
       
   294 end
       
   295 
       
   296 subsection {* Complete lattices are Kleene algebras *}
       
   297 
       
   298 lemma (in complete_lattice) le_SUPI':
       
   299   assumes "l \<le> M i"
       
   300   shows "l \<le> (SUP i. M i)"
       
   301   using assms by (rule order_trans) (rule le_SUPI [OF UNIV_I])
       
   302 
       
   303 class kleene_by_complete_lattice = pre_kleene
       
   304   + complete_lattice + power + star +
       
   305   assumes star_cont: "a * star b * c = SUPR UNIV (\<lambda>n. a * b ^ n * c)"
       
   306 begin
       
   307 
       
   308 subclass kleene
       
   309 proof
       
   310   fix a x :: 'a
       
   311   
       
   312   have [simp]: "1 \<le> star a"
       
   313     unfolding star_cont[of 1 a 1, simplified] 
       
   314     by (subst power_0[symmetric]) (rule le_SUPI [OF UNIV_I])
       
   315   
       
   316   show "1 + a * star a \<le> star a" 
       
   317     apply (rule plus_leI, simp)
       
   318     apply (simp add:star_cont[of a a 1, simplified])
       
   319     apply (simp add:star_cont[of 1 a 1, simplified])
       
   320     apply (subst power_Suc[symmetric])
       
   321     by (intro SUP_leI le_SUPI UNIV_I)
       
   322 
       
   323   show "1 + star a * a \<le> star a" 
       
   324     apply (rule plus_leI, simp)
       
   325     apply (simp add:star_cont[of 1 a a, simplified])
       
   326     apply (simp add:star_cont[of 1 a 1, simplified])
       
   327     by (auto intro: SUP_leI le_SUPI simp add: power_Suc[symmetric] power_commutes simp del: power_Suc)
       
   328 
       
   329   show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
       
   330   proof -
       
   331     assume a: "a * x \<le> x"
       
   332 
       
   333     {
       
   334       fix n
       
   335       have "a ^ (Suc n) * x \<le> a ^ n * x"
       
   336       proof (induct n)
       
   337         case 0 thus ?case by (simp add: a)
       
   338       next
       
   339         case (Suc n)
       
   340         hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
       
   341           by (auto intro: mult_mono)
       
   342         thus ?case
       
   343           by (simp add: mult_assoc)
       
   344       qed
       
   345     }
       
   346     note a = this
       
   347     
       
   348     {
       
   349       fix n have "a ^ n * x \<le> x"
       
   350       proof (induct n)
       
   351         case 0 show ?case by simp
       
   352       next
       
   353         case (Suc n) with a[of n]
       
   354         show ?case by simp
       
   355       qed
       
   356     }
       
   357     note b = this
       
   358     
       
   359     show "star a * x \<le> x"
       
   360       unfolding star_cont[of 1 a x, simplified]
       
   361       by (rule SUP_leI) (rule b)
       
   362   qed
       
   363 
       
   364   show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *)
       
   365   proof -
       
   366     assume a: "x * a \<le> x"
       
   367 
       
   368     {
       
   369       fix n
       
   370       have "x * a ^ (Suc n) \<le> x * a ^ n"
       
   371       proof (induct n)
       
   372         case 0 thus ?case by (simp add: a)
       
   373       next
       
   374         case (Suc n)
       
   375         hence "(x * a ^ Suc n) * a  \<le> (x * a ^ n) * a"
       
   376           by (auto intro: mult_mono)
       
   377         thus ?case
       
   378           by (simp add: power_commutes mult_assoc)
       
   379       qed
       
   380     }
       
   381     note a = this
       
   382     
       
   383     {
       
   384       fix n have "x * a ^ n \<le> x"
       
   385       proof (induct n)
       
   386         case 0 show ?case by simp
       
   387       next
       
   388         case (Suc n) with a[of n]
       
   389         show ?case by simp
       
   390       qed
       
   391     }
       
   392     note b = this
       
   393     
       
   394     show "x * star a \<le> x"
       
   395       unfolding star_cont[of x a 1, simplified]
       
   396       by (rule SUP_leI) (rule b)
       
   397   qed
       
   398 qed
       
   399 
       
   400 end
       
   401 
       
   402 
       
   403 subsection {* Transitive Closure *}
       
   404 
       
   405 context kleene
       
   406 begin
       
   407 
       
   408 definition 
       
   409   tcl_def:  "tcl x = star x * x"
       
   410 
       
   411 lemma tcl_zero: "tcl 0 = 0"
       
   412 unfolding tcl_def by simp
       
   413 
       
   414 lemma tcl_unfold_right: "tcl a = a + tcl a * a"
       
   415 proof -
       
   416   from star_unfold_right[of a]
       
   417   have "a * (1 + star a * a) = a * star a" by simp
       
   418   from this[simplified right_distrib, simplified]
       
   419   show ?thesis
       
   420     by (simp add:tcl_def mult_assoc)
       
   421 qed
       
   422 
       
   423 lemma less_tcl: "a \<le> tcl a"
       
   424 proof -
       
   425   have "a \<le> a + tcl a * a" by simp
       
   426   also have "\<dots> = tcl a" by (rule tcl_unfold_right[symmetric])
       
   427   finally show ?thesis .
       
   428 qed
       
   429 
       
   430 end
       
   431 
       
   432 
       
   433 subsection {* Naive Algorithm to generate the transitive closure *}
       
   434 
       
   435 function (default "\<lambda>x. 0", tailrec, domintros)
       
   436   mk_tcl :: "('a::{plus,times,ord,zero}) \<Rightarrow> 'a \<Rightarrow> 'a"
       
   437 where
       
   438   "mk_tcl A X = (if X * A \<le> X then X else mk_tcl A (X + X * A))"
       
   439   by pat_completeness simp
       
   440 
       
   441 declare mk_tcl.simps[simp del] (* loops *)
       
   442 
       
   443 lemma mk_tcl_code[code]:
       
   444   "mk_tcl A X = 
       
   445   (let XA = X * A 
       
   446   in if XA \<le> X then X else mk_tcl A (X + XA))"
       
   447   unfolding mk_tcl.simps[of A X] Let_def ..
       
   448 
       
   449 context kleene
       
   450 begin
       
   451 
       
   452 lemma mk_tcl_lemma1:
       
   453   "(X + X * A) * star A = X * star A"
       
   454 proof -
       
   455   have "A * star A \<le> 1 + A * star A" by simp
       
   456   also have "\<dots> = star A" by (simp add:star_unfold_left)
       
   457   finally have "star A + A * star A = star A" by simp
       
   458   hence "X * (star A + A * star A) = X * star A" by simp
       
   459   thus ?thesis by (simp add:left_distrib right_distrib mult_assoc)
       
   460 qed
       
   461 
       
   462 lemma mk_tcl_lemma2:
       
   463   shows "X * A \<le> X \<Longrightarrow> X * star A = X"
       
   464   by (rule antisym) (auto simp:star4)
       
   465 
       
   466 end
       
   467 
       
   468 lemma mk_tcl_correctness:
       
   469   fixes X :: "'a::kleene"
       
   470   assumes "mk_tcl_dom (A, X)"
       
   471   shows "mk_tcl A X = X * star A"
       
   472   using assms
       
   473   by induct (auto simp: mk_tcl_lemma1 mk_tcl_lemma2)
       
   474 
       
   475 
       
   476 lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x"
       
   477   by (rule mk_tcl_graph.induct) (auto intro:accp.accI elim:mk_tcl_rel.cases)
       
   478 
       
   479 lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0"
       
   480   unfolding mk_tcl_def
       
   481   by (rule fundef_default_value[OF mk_tcl_sumC_def graph_implies_dom])
       
   482 
       
   483 
       
   484 text {* We can replace the dom-Condition of the correctness theorem 
       
   485   with something executable *}
       
   486 
       
   487 lemma mk_tcl_correctness2:
       
   488   fixes A X :: "'a :: {kleene}"
       
   489   assumes "mk_tcl A A \<noteq> 0"
       
   490   shows "mk_tcl A A = tcl A"
       
   491   using assms mk_tcl_default mk_tcl_correctness
       
   492   unfolding tcl_def 
       
   493   by auto
       
   494 
       
   495 end