1 (* Title: HOL/Library/Permutations.thy |
|
2 Author: Amine Chaieb, University of Cambridge |
|
3 *) |
|
4 |
|
5 section \<open>Permutations, both general and specifically on finite sets.\<close> |
|
6 |
|
7 theory Permutations |
|
8 imports Multiset Disjoint_Sets |
|
9 begin |
|
10 |
|
11 subsection \<open>Auxiliary\<close> |
|
12 |
|
13 abbreviation (input) fixpoints :: \<open>('a \<Rightarrow> 'a) \<Rightarrow> 'a set\<close> |
|
14 where \<open>fixpoints f \<equiv> {x. f x = x}\<close> |
|
15 |
|
16 lemma inj_on_fixpoints: |
|
17 \<open>inj_on f (fixpoints f)\<close> |
|
18 by (rule inj_onI) simp |
|
19 |
|
20 lemma bij_betw_fixpoints: |
|
21 \<open>bij_betw f (fixpoints f) (fixpoints f)\<close> |
|
22 using inj_on_fixpoints by (auto simp add: bij_betw_def) |
|
23 |
|
24 |
|
25 subsection \<open>Basic definition and consequences\<close> |
|
26 |
|
27 definition permutes :: \<open>('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool\<close> (infixr \<open>permutes\<close> 41) |
|
28 where \<open>p permutes S \<longleftrightarrow> (\<forall>x. x \<notin> S \<longrightarrow> p x = x) \<and> (\<forall>y. \<exists>!x. p x = y)\<close> |
|
29 |
|
30 lemma bij_imp_permutes: |
|
31 \<open>p permutes S\<close> if \<open>bij_betw p S S\<close> and stable: \<open>\<And>x. x \<notin> S \<Longrightarrow> p x = x\<close> |
|
32 proof - |
|
33 note \<open>bij_betw p S S\<close> |
|
34 moreover have \<open>bij_betw p (- S) (- S)\<close> |
|
35 by (auto simp add: stable intro!: bij_betw_imageI inj_onI) |
|
36 ultimately have \<open>bij_betw p (S \<union> - S) (S \<union> - S)\<close> |
|
37 by (rule bij_betw_combine) simp |
|
38 then have \<open>\<exists>!x. p x = y\<close> for y |
|
39 by (simp add: bij_iff) |
|
40 with stable show ?thesis |
|
41 by (simp add: permutes_def) |
|
42 qed |
|
43 |
|
44 context |
|
45 fixes p :: \<open>'a \<Rightarrow> 'a\<close> and S :: \<open>'a set\<close> |
|
46 assumes perm: \<open>p permutes S\<close> |
|
47 begin |
|
48 |
|
49 lemma permutes_inj: |
|
50 \<open>inj p\<close> |
|
51 using perm by (auto simp: permutes_def inj_on_def) |
|
52 |
|
53 lemma permutes_image: |
|
54 \<open>p ` S = S\<close> |
|
55 proof (rule set_eqI) |
|
56 fix x |
|
57 show \<open>x \<in> p ` S \<longleftrightarrow> x \<in> S\<close> |
|
58 proof |
|
59 assume \<open>x \<in> p ` S\<close> |
|
60 then obtain y where \<open>y \<in> S\<close> \<open>p y = x\<close> |
|
61 by blast |
|
62 with perm show \<open>x \<in> S\<close> |
|
63 by (cases \<open>y = x\<close>) (auto simp add: permutes_def) |
|
64 next |
|
65 assume \<open>x \<in> S\<close> |
|
66 with perm obtain y where \<open>y \<in> S\<close> \<open>p y = x\<close> |
|
67 by (metis permutes_def) |
|
68 then show \<open>x \<in> p ` S\<close> |
|
69 by blast |
|
70 qed |
|
71 qed |
|
72 |
|
73 lemma permutes_not_in: |
|
74 \<open>x \<notin> S \<Longrightarrow> p x = x\<close> |
|
75 using perm by (auto simp: permutes_def) |
|
76 |
|
77 lemma permutes_image_complement: |
|
78 \<open>p ` (- S) = - S\<close> |
|
79 by (auto simp add: permutes_not_in) |
|
80 |
|
81 lemma permutes_in_image: |
|
82 \<open>p x \<in> S \<longleftrightarrow> x \<in> S\<close> |
|
83 using permutes_image permutes_inj by (auto dest: inj_image_mem_iff) |
|
84 |
|
85 lemma permutes_surj: |
|
86 \<open>surj p\<close> |
|
87 proof - |
|
88 have \<open>p ` (S \<union> - S) = p ` S \<union> p ` (- S)\<close> |
|
89 by (rule image_Un) |
|
90 then show ?thesis |
|
91 by (simp add: permutes_image permutes_image_complement) |
|
92 qed |
|
93 |
|
94 lemma permutes_inv_o: |
|
95 shows "p \<circ> inv p = id" |
|
96 and "inv p \<circ> p = id" |
|
97 using permutes_inj permutes_surj |
|
98 unfolding inj_iff [symmetric] surj_iff [symmetric] by auto |
|
99 |
|
100 lemma permutes_inverses: |
|
101 shows "p (inv p x) = x" |
|
102 and "inv p (p x) = x" |
|
103 using permutes_inv_o [unfolded fun_eq_iff o_def] by auto |
|
104 |
|
105 lemma permutes_inv_eq: |
|
106 \<open>inv p y = x \<longleftrightarrow> p x = y\<close> |
|
107 by (auto simp add: permutes_inverses) |
|
108 |
|
109 lemma permutes_inj_on: |
|
110 \<open>inj_on p A\<close> |
|
111 by (rule inj_on_subset [of _ UNIV]) (auto intro: permutes_inj) |
|
112 |
|
113 lemma permutes_bij: |
|
114 \<open>bij p\<close> |
|
115 unfolding bij_def by (metis permutes_inj permutes_surj) |
|
116 |
|
117 lemma permutes_imp_bij: |
|
118 \<open>bij_betw p S S\<close> |
|
119 by (simp add: bij_betw_def permutes_image permutes_inj_on) |
|
120 |
|
121 lemma permutes_subset: |
|
122 \<open>p permutes T\<close> if \<open>S \<subseteq> T\<close> |
|
123 proof (rule bij_imp_permutes) |
|
124 define R where \<open>R = T - S\<close> |
|
125 with that have \<open>T = R \<union> S\<close> \<open>R \<inter> S = {}\<close> |
|
126 by auto |
|
127 then have \<open>p x = x\<close> if \<open>x \<in> R\<close> for x |
|
128 using that by (auto intro: permutes_not_in) |
|
129 then have \<open>p ` R = R\<close> |
|
130 by simp |
|
131 with \<open>T = R \<union> S\<close> show \<open>bij_betw p T T\<close> |
|
132 by (simp add: bij_betw_def permutes_inj_on image_Un permutes_image) |
|
133 fix x |
|
134 assume \<open>x \<notin> T\<close> |
|
135 with \<open>T = R \<union> S\<close> show \<open>p x = x\<close> |
|
136 by (simp add: permutes_not_in) |
|
137 qed |
|
138 |
|
139 lemma permutes_imp_permutes_insert: |
|
140 \<open>p permutes insert x S\<close> |
|
141 by (rule permutes_subset) auto |
|
142 |
|
143 end |
|
144 |
|
145 lemma permutes_id [simp]: |
|
146 \<open>id permutes S\<close> |
|
147 by (auto intro: bij_imp_permutes) |
|
148 |
|
149 lemma permutes_empty [simp]: |
|
150 \<open>p permutes {} \<longleftrightarrow> p = id\<close> |
|
151 proof |
|
152 assume \<open>p permutes {}\<close> |
|
153 then show \<open>p = id\<close> |
|
154 by (auto simp add: fun_eq_iff permutes_not_in) |
|
155 next |
|
156 assume \<open>p = id\<close> |
|
157 then show \<open>p permutes {}\<close> |
|
158 by simp |
|
159 qed |
|
160 |
|
161 lemma permutes_sing [simp]: |
|
162 \<open>p permutes {a} \<longleftrightarrow> p = id\<close> |
|
163 proof |
|
164 assume perm: \<open>p permutes {a}\<close> |
|
165 show \<open>p = id\<close> |
|
166 proof |
|
167 fix x |
|
168 from perm have \<open>p ` {a} = {a}\<close> |
|
169 by (rule permutes_image) |
|
170 with perm show \<open>p x = id x\<close> |
|
171 by (cases \<open>x = a\<close>) (auto simp add: permutes_not_in) |
|
172 qed |
|
173 next |
|
174 assume \<open>p = id\<close> |
|
175 then show \<open>p permutes {a}\<close> |
|
176 by simp |
|
177 qed |
|
178 |
|
179 lemma permutes_univ: "p permutes UNIV \<longleftrightarrow> (\<forall>y. \<exists>!x. p x = y)" |
|
180 by (simp add: permutes_def) |
|
181 |
|
182 lemma permutes_swap_id: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> Fun.swap a b id permutes S" |
|
183 by (rule bij_imp_permutes) (auto simp add: swap_id_eq) |
|
184 |
|
185 lemma permutes_superset: |
|
186 \<open>p permutes T\<close> if \<open>p permutes S\<close> \<open>\<And>x. x \<in> S - T \<Longrightarrow> p x = x\<close> |
|
187 proof - |
|
188 define R U where \<open>R = T \<inter> S\<close> and \<open>U = S - T\<close> |
|
189 then have \<open>T = R \<union> (T - S)\<close> \<open>S = R \<union> U\<close> \<open>R \<inter> U = {}\<close> |
|
190 by auto |
|
191 from that \<open>U = S - T\<close> have \<open>p ` U = U\<close> |
|
192 by simp |
|
193 from \<open>p permutes S\<close> have \<open>bij_betw p (R \<union> U) (R \<union> U)\<close> |
|
194 by (simp add: permutes_imp_bij \<open>S = R \<union> U\<close>) |
|
195 moreover have \<open>bij_betw p U U\<close> |
|
196 using that \<open>U = S - T\<close> by (simp add: bij_betw_def permutes_inj_on) |
|
197 ultimately have \<open>bij_betw p R R\<close> |
|
198 using \<open>R \<inter> U = {}\<close> \<open>R \<inter> U = {}\<close> by (rule bij_betw_partition) |
|
199 then have \<open>p permutes R\<close> |
|
200 proof (rule bij_imp_permutes) |
|
201 fix x |
|
202 assume \<open>x \<notin> R\<close> |
|
203 with \<open>R = T \<inter> S\<close> \<open>p permutes S\<close> show \<open>p x = x\<close> |
|
204 by (cases \<open>x \<in> S\<close>) (auto simp add: permutes_not_in that(2)) |
|
205 qed |
|
206 then have \<open>p permutes R \<union> (T - S)\<close> |
|
207 by (rule permutes_subset) simp |
|
208 with \<open>T = R \<union> (T - S)\<close> show ?thesis |
|
209 by simp |
|
210 qed |
|
211 |
|
212 lemma permutes_bij_inv_into: \<^marker>\<open>contributor \<open>Lukas Bulwahn\<close>\<close> |
|
213 fixes A :: "'a set" |
|
214 and B :: "'b set" |
|
215 assumes "p permutes A" |
|
216 and "bij_betw f A B" |
|
217 shows "(\<lambda>x. if x \<in> B then f (p (inv_into A f x)) else x) permutes B" |
|
218 proof (rule bij_imp_permutes) |
|
219 from assms have "bij_betw p A A" "bij_betw f A B" "bij_betw (inv_into A f) B A" |
|
220 by (auto simp add: permutes_imp_bij bij_betw_inv_into) |
|
221 then have "bij_betw (f \<circ> p \<circ> inv_into A f) B B" |
|
222 by (simp add: bij_betw_trans) |
|
223 then show "bij_betw (\<lambda>x. if x \<in> B then f (p (inv_into A f x)) else x) B B" |
|
224 by (subst bij_betw_cong[where g="f \<circ> p \<circ> inv_into A f"]) auto |
|
225 next |
|
226 fix x |
|
227 assume "x \<notin> B" |
|
228 then show "(if x \<in> B then f (p (inv_into A f x)) else x) = x" by auto |
|
229 qed |
|
230 |
|
231 lemma permutes_image_mset: \<^marker>\<open>contributor \<open>Lukas Bulwahn\<close>\<close> |
|
232 assumes "p permutes A" |
|
233 shows "image_mset p (mset_set A) = mset_set A" |
|
234 using assms by (metis image_mset_mset_set bij_betw_imp_inj_on permutes_imp_bij permutes_image) |
|
235 |
|
236 lemma permutes_implies_image_mset_eq: \<^marker>\<open>contributor \<open>Lukas Bulwahn\<close>\<close> |
|
237 assumes "p permutes A" "\<And>x. x \<in> A \<Longrightarrow> f x = f' (p x)" |
|
238 shows "image_mset f' (mset_set A) = image_mset f (mset_set A)" |
|
239 proof - |
|
240 have "f x = f' (p x)" if "x \<in># mset_set A" for x |
|
241 using assms(2)[of x] that by (cases "finite A") auto |
|
242 with assms have "image_mset f (mset_set A) = image_mset (f' \<circ> p) (mset_set A)" |
|
243 by (auto intro!: image_mset_cong) |
|
244 also have "\<dots> = image_mset f' (image_mset p (mset_set A))" |
|
245 by (simp add: image_mset.compositionality) |
|
246 also have "\<dots> = image_mset f' (mset_set A)" |
|
247 proof - |
|
248 from assms permutes_image_mset have "image_mset p (mset_set A) = mset_set A" |
|
249 by blast |
|
250 then show ?thesis by simp |
|
251 qed |
|
252 finally show ?thesis .. |
|
253 qed |
|
254 |
|
255 |
|
256 subsection \<open>Group properties\<close> |
|
257 |
|
258 lemma permutes_compose: "p permutes S \<Longrightarrow> q permutes S \<Longrightarrow> q \<circ> p permutes S" |
|
259 unfolding permutes_def o_def by metis |
|
260 |
|
261 lemma permutes_inv: |
|
262 assumes "p permutes S" |
|
263 shows "inv p permutes S" |
|
264 using assms unfolding permutes_def permutes_inv_eq[OF assms] by metis |
|
265 |
|
266 lemma permutes_inv_inv: |
|
267 assumes "p permutes S" |
|
268 shows "inv (inv p) = p" |
|
269 unfolding fun_eq_iff permutes_inv_eq[OF assms] permutes_inv_eq[OF permutes_inv[OF assms]] |
|
270 by blast |
|
271 |
|
272 lemma permutes_invI: |
|
273 assumes perm: "p permutes S" |
|
274 and inv: "\<And>x. x \<in> S \<Longrightarrow> p' (p x) = x" |
|
275 and outside: "\<And>x. x \<notin> S \<Longrightarrow> p' x = x" |
|
276 shows "inv p = p'" |
|
277 proof |
|
278 show "inv p x = p' x" for x |
|
279 proof (cases "x \<in> S") |
|
280 case True |
|
281 from assms have "p' x = p' (p (inv p x))" |
|
282 by (simp add: permutes_inverses) |
|
283 also from permutes_inv[OF perm] True have "\<dots> = inv p x" |
|
284 by (subst inv) (simp_all add: permutes_in_image) |
|
285 finally show ?thesis .. |
|
286 next |
|
287 case False |
|
288 with permutes_inv[OF perm] show ?thesis |
|
289 by (simp_all add: outside permutes_not_in) |
|
290 qed |
|
291 qed |
|
292 |
|
293 lemma permutes_vimage: "f permutes A \<Longrightarrow> f -` A = A" |
|
294 by (simp add: bij_vimage_eq_inv_image permutes_bij permutes_image[OF permutes_inv]) |
|
295 |
|
296 |
|
297 subsection \<open>Mapping permutations with bijections\<close> |
|
298 |
|
299 lemma bij_betw_permutations: |
|
300 assumes "bij_betw f A B" |
|
301 shows "bij_betw (\<lambda>\<pi> x. if x \<in> B then f (\<pi> (inv_into A f x)) else x) |
|
302 {\<pi>. \<pi> permutes A} {\<pi>. \<pi> permutes B}" (is "bij_betw ?f _ _") |
|
303 proof - |
|
304 let ?g = "(\<lambda>\<pi> x. if x \<in> A then inv_into A f (\<pi> (f x)) else x)" |
|
305 show ?thesis |
|
306 proof (rule bij_betw_byWitness [of _ ?g], goal_cases) |
|
307 case 3 |
|
308 show ?case using permutes_bij_inv_into[OF _ assms] by auto |
|
309 next |
|
310 case 4 |
|
311 have bij_inv: "bij_betw (inv_into A f) B A" by (intro bij_betw_inv_into assms) |
|
312 { |
|
313 fix \<pi> assume "\<pi> permutes B" |
|
314 from permutes_bij_inv_into[OF this bij_inv] and assms |
|
315 have "(\<lambda>x. if x \<in> A then inv_into A f (\<pi> (f x)) else x) permutes A" |
|
316 by (simp add: inv_into_inv_into_eq cong: if_cong) |
|
317 } |
|
318 from this show ?case by (auto simp: permutes_inv) |
|
319 next |
|
320 case 1 |
|
321 thus ?case using assms |
|
322 by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left |
|
323 dest: bij_betwE) |
|
324 next |
|
325 case 2 |
|
326 moreover have "bij_betw (inv_into A f) B A" |
|
327 by (intro bij_betw_inv_into assms) |
|
328 ultimately show ?case using assms |
|
329 by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right |
|
330 dest: bij_betwE) |
|
331 qed |
|
332 qed |
|
333 |
|
334 lemma bij_betw_derangements: |
|
335 assumes "bij_betw f A B" |
|
336 shows "bij_betw (\<lambda>\<pi> x. if x \<in> B then f (\<pi> (inv_into A f x)) else x) |
|
337 {\<pi>. \<pi> permutes A \<and> (\<forall>x\<in>A. \<pi> x \<noteq> x)} {\<pi>. \<pi> permutes B \<and> (\<forall>x\<in>B. \<pi> x \<noteq> x)}" |
|
338 (is "bij_betw ?f _ _") |
|
339 proof - |
|
340 let ?g = "(\<lambda>\<pi> x. if x \<in> A then inv_into A f (\<pi> (f x)) else x)" |
|
341 show ?thesis |
|
342 proof (rule bij_betw_byWitness [of _ ?g], goal_cases) |
|
343 case 3 |
|
344 have "?f \<pi> x \<noteq> x" if "\<pi> permutes A" "\<And>x. x \<in> A \<Longrightarrow> \<pi> x \<noteq> x" "x \<in> B" for \<pi> x |
|
345 using that and assms by (metis bij_betwE bij_betw_imp_inj_on bij_betw_imp_surj_on |
|
346 inv_into_f_f inv_into_into permutes_imp_bij) |
|
347 with permutes_bij_inv_into[OF _ assms] show ?case by auto |
|
348 next |
|
349 case 4 |
|
350 have bij_inv: "bij_betw (inv_into A f) B A" by (intro bij_betw_inv_into assms) |
|
351 have "?g \<pi> permutes A" if "\<pi> permutes B" for \<pi> |
|
352 using permutes_bij_inv_into[OF that bij_inv] and assms |
|
353 by (simp add: inv_into_inv_into_eq cong: if_cong) |
|
354 moreover have "?g \<pi> x \<noteq> x" if "\<pi> permutes B" "\<And>x. x \<in> B \<Longrightarrow> \<pi> x \<noteq> x" "x \<in> A" for \<pi> x |
|
355 using that and assms by (metis bij_betwE bij_betw_imp_surj_on f_inv_into_f permutes_imp_bij) |
|
356 ultimately show ?case by auto |
|
357 next |
|
358 case 1 |
|
359 thus ?case using assms |
|
360 by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left |
|
361 dest: bij_betwE) |
|
362 next |
|
363 case 2 |
|
364 moreover have "bij_betw (inv_into A f) B A" |
|
365 by (intro bij_betw_inv_into assms) |
|
366 ultimately show ?case using assms |
|
367 by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right |
|
368 dest: bij_betwE) |
|
369 qed |
|
370 qed |
|
371 |
|
372 |
|
373 subsection \<open>The number of permutations on a finite set\<close> |
|
374 |
|
375 lemma permutes_insert_lemma: |
|
376 assumes "p permutes (insert a S)" |
|
377 shows "Fun.swap a (p a) id \<circ> p permutes S" |
|
378 apply (rule permutes_superset[where S = "insert a S"]) |
|
379 apply (rule permutes_compose[OF assms]) |
|
380 apply (rule permutes_swap_id, simp) |
|
381 using permutes_in_image[OF assms, of a] |
|
382 apply simp |
|
383 apply (auto simp add: Ball_def Fun.swap_def) |
|
384 done |
|
385 |
|
386 lemma permutes_insert: "{p. p permutes (insert a S)} = |
|
387 (\<lambda>(b, p). Fun.swap a b id \<circ> p) ` {(b, p). b \<in> insert a S \<and> p \<in> {p. p permutes S}}" |
|
388 proof - |
|
389 have "p permutes insert a S \<longleftrightarrow> |
|
390 (\<exists>b q. p = Fun.swap a b id \<circ> q \<and> b \<in> insert a S \<and> q permutes S)" for p |
|
391 proof - |
|
392 have "\<exists>b q. p = Fun.swap a b id \<circ> q \<and> b \<in> insert a S \<and> q permutes S" |
|
393 if p: "p permutes insert a S" |
|
394 proof - |
|
395 let ?b = "p a" |
|
396 let ?q = "Fun.swap a (p a) id \<circ> p" |
|
397 have *: "p = Fun.swap a ?b id \<circ> ?q" |
|
398 by (simp add: fun_eq_iff o_assoc) |
|
399 have **: "?b \<in> insert a S" |
|
400 unfolding permutes_in_image[OF p] by simp |
|
401 from permutes_insert_lemma[OF p] * ** show ?thesis |
|
402 by blast |
|
403 qed |
|
404 moreover have "p permutes insert a S" |
|
405 if bq: "p = Fun.swap a b id \<circ> q" "b \<in> insert a S" "q permutes S" for b q |
|
406 proof - |
|
407 from permutes_subset[OF bq(3), of "insert a S"] have q: "q permutes insert a S" |
|
408 by auto |
|
409 have a: "a \<in> insert a S" |
|
410 by simp |
|
411 from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show ?thesis |
|
412 by simp |
|
413 qed |
|
414 ultimately show ?thesis by blast |
|
415 qed |
|
416 then show ?thesis by auto |
|
417 qed |
|
418 |
|
419 lemma card_permutations: |
|
420 assumes "card S = n" |
|
421 and "finite S" |
|
422 shows "card {p. p permutes S} = fact n" |
|
423 using assms(2,1) |
|
424 proof (induct arbitrary: n) |
|
425 case empty |
|
426 then show ?case by simp |
|
427 next |
|
428 case (insert x F) |
|
429 { |
|
430 fix n |
|
431 assume card_insert: "card (insert x F) = n" |
|
432 let ?xF = "{p. p permutes insert x F}" |
|
433 let ?pF = "{p. p permutes F}" |
|
434 let ?pF' = "{(b, p). b \<in> insert x F \<and> p \<in> ?pF}" |
|
435 let ?g = "(\<lambda>(b, p). Fun.swap x b id \<circ> p)" |
|
436 have xfgpF': "?xF = ?g ` ?pF'" |
|
437 by (rule permutes_insert[of x F]) |
|
438 from \<open>x \<notin> F\<close> \<open>finite F\<close> card_insert have Fs: "card F = n - 1" |
|
439 by auto |
|
440 from \<open>finite F\<close> insert.hyps Fs have pFs: "card ?pF = fact (n - 1)" |
|
441 by auto |
|
442 then have "finite ?pF" |
|
443 by (auto intro: card_ge_0_finite) |
|
444 with \<open>finite F\<close> card.insert_remove have pF'f: "finite ?pF'" |
|
445 apply (simp only: Collect_case_prod Collect_mem_eq) |
|
446 apply (rule finite_cartesian_product) |
|
447 apply simp_all |
|
448 done |
|
449 |
|
450 have ginj: "inj_on ?g ?pF'" |
|
451 proof - |
|
452 { |
|
453 fix b p c q |
|
454 assume bp: "(b, p) \<in> ?pF'" |
|
455 assume cq: "(c, q) \<in> ?pF'" |
|
456 assume eq: "?g (b, p) = ?g (c, q)" |
|
457 from bp cq have pF: "p permutes F" and qF: "q permutes F" |
|
458 by auto |
|
459 from pF \<open>x \<notin> F\<close> eq have "b = ?g (b, p) x" |
|
460 by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff) |
|
461 also from qF \<open>x \<notin> F\<close> eq have "\<dots> = ?g (c, q) x" |
|
462 by (auto simp: fun_upd_def fun_eq_iff) |
|
463 also from qF \<open>x \<notin> F\<close> have "\<dots> = c" |
|
464 by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff) |
|
465 finally have "b = c" . |
|
466 then have "Fun.swap x b id = Fun.swap x c id" |
|
467 by simp |
|
468 with eq have "Fun.swap x b id \<circ> p = Fun.swap x b id \<circ> q" |
|
469 by simp |
|
470 then have "Fun.swap x b id \<circ> (Fun.swap x b id \<circ> p) = Fun.swap x b id \<circ> (Fun.swap x b id \<circ> q)" |
|
471 by simp |
|
472 then have "p = q" |
|
473 by (simp add: o_assoc) |
|
474 with \<open>b = c\<close> have "(b, p) = (c, q)" |
|
475 by simp |
|
476 } |
|
477 then show ?thesis |
|
478 unfolding inj_on_def by blast |
|
479 qed |
|
480 from \<open>x \<notin> F\<close> \<open>finite F\<close> card_insert have "n \<noteq> 0" |
|
481 by auto |
|
482 then have "\<exists>m. n = Suc m" |
|
483 by presburger |
|
484 then obtain m where n: "n = Suc m" |
|
485 by blast |
|
486 from pFs card_insert have *: "card ?xF = fact n" |
|
487 unfolding xfgpF' card_image[OF ginj] |
|
488 using \<open>finite F\<close> \<open>finite ?pF\<close> |
|
489 by (simp only: Collect_case_prod Collect_mem_eq card_cartesian_product) (simp add: n) |
|
490 from finite_imageI[OF pF'f, of ?g] have xFf: "finite ?xF" |
|
491 by (simp add: xfgpF' n) |
|
492 from * have "card ?xF = fact n" |
|
493 unfolding xFf by blast |
|
494 } |
|
495 with insert show ?case by simp |
|
496 qed |
|
497 |
|
498 lemma finite_permutations: |
|
499 assumes "finite S" |
|
500 shows "finite {p. p permutes S}" |
|
501 using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite) |
|
502 |
|
503 |
|
504 subsection \<open>Hence a sort of induction principle composing by swaps\<close> |
|
505 |
|
506 lemma permutes_induct [consumes 2, case_names id swap]: |
|
507 \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close> |
|
508 and id: \<open>P id\<close> |
|
509 and swap: \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> p permutes S \<Longrightarrow> P p \<Longrightarrow> P (Fun.swap a b id \<circ> p)\<close> |
|
510 using \<open>finite S\<close> \<open>p permutes S\<close> swap proof (induction S arbitrary: p) |
|
511 case empty |
|
512 with id show ?case |
|
513 by (simp only: permutes_empty) |
|
514 next |
|
515 case (insert x S p) |
|
516 define q where \<open>q = Fun.swap x (p x) id \<circ> p\<close> |
|
517 then have swap_q: \<open>Fun.swap x (p x) id \<circ> q = p\<close> |
|
518 by (simp add: o_assoc) |
|
519 from \<open>p permutes insert x S\<close> have \<open>q permutes S\<close> |
|
520 by (simp add: q_def permutes_insert_lemma) |
|
521 then have \<open>q permutes insert x S\<close> |
|
522 by (simp add: permutes_imp_permutes_insert) |
|
523 from \<open>q permutes S\<close> have \<open>P q\<close> |
|
524 by (auto intro: insert.IH insert.prems(2) permutes_imp_permutes_insert) |
|
525 have \<open>x \<in> insert x S\<close> |
|
526 by simp |
|
527 moreover from \<open>p permutes insert x S\<close> have \<open>p x \<in> insert x S\<close> |
|
528 using permutes_in_image [of p \<open>insert x S\<close> x] by simp |
|
529 ultimately have \<open>P (Fun.swap x (p x) id \<circ> q)\<close> |
|
530 using \<open>q permutes insert x S\<close> \<open>P q\<close> |
|
531 by (rule insert.prems(2)) |
|
532 then show ?case |
|
533 by (simp add: swap_q) |
|
534 qed |
|
535 |
|
536 lemma permutes_rev_induct [consumes 2, case_names id swap]: |
|
537 \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close> |
|
538 and id': \<open>P id\<close> |
|
539 and swap': \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> p permutes S \<Longrightarrow> P p \<Longrightarrow> P (Fun.swap a b p)\<close> |
|
540 using \<open>p permutes S\<close> \<open>finite S\<close> proof (induction rule: permutes_induct) |
|
541 case id |
|
542 from id' show ?case . |
|
543 next |
|
544 case (swap a b p) |
|
545 have \<open>P (Fun.swap (inv p a) (inv p b) p)\<close> |
|
546 by (rule swap') (auto simp add: swap permutes_in_image permutes_inv) |
|
547 also have \<open>Fun.swap (inv p a) (inv p b) p = Fun.swap a b id \<circ> p\<close> |
|
548 by (rule bij_swap_comp [symmetric]) (rule permutes_bij, rule swap) |
|
549 finally show ?case . |
|
550 qed |
|
551 |
|
552 |
|
553 subsection \<open>Permutations of index set for iterated operations\<close> |
|
554 |
|
555 lemma (in comm_monoid_set) permute: |
|
556 assumes "p permutes S" |
|
557 shows "F g S = F (g \<circ> p) S" |
|
558 proof - |
|
559 from \<open>p permutes S\<close> have "inj p" |
|
560 by (rule permutes_inj) |
|
561 then have "inj_on p S" |
|
562 by (auto intro: subset_inj_on) |
|
563 then have "F g (p ` S) = F (g \<circ> p) S" |
|
564 by (rule reindex) |
|
565 moreover from \<open>p permutes S\<close> have "p ` S = S" |
|
566 by (rule permutes_image) |
|
567 ultimately show ?thesis |
|
568 by simp |
|
569 qed |
|
570 |
|
571 |
|
572 subsection \<open>Permutations as transposition sequences\<close> |
|
573 |
|
574 inductive swapidseq :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
575 where |
|
576 id[simp]: "swapidseq 0 id" |
|
577 | comp_Suc: "swapidseq n p \<Longrightarrow> a \<noteq> b \<Longrightarrow> swapidseq (Suc n) (Fun.swap a b id \<circ> p)" |
|
578 |
|
579 declare id[unfolded id_def, simp] |
|
580 |
|
581 definition "permutation p \<longleftrightarrow> (\<exists>n. swapidseq n p)" |
|
582 |
|
583 |
|
584 subsection \<open>Some closure properties of the set of permutations, with lengths\<close> |
|
585 |
|
586 lemma permutation_id[simp]: "permutation id" |
|
587 unfolding permutation_def by (rule exI[where x=0]) simp |
|
588 |
|
589 declare permutation_id[unfolded id_def, simp] |
|
590 |
|
591 lemma swapidseq_swap: "swapidseq (if a = b then 0 else 1) (Fun.swap a b id)" |
|
592 apply clarsimp |
|
593 using comp_Suc[of 0 id a b] |
|
594 apply simp |
|
595 done |
|
596 |
|
597 lemma permutation_swap_id: "permutation (Fun.swap a b id)" |
|
598 proof (cases "a = b") |
|
599 case True |
|
600 then show ?thesis by simp |
|
601 next |
|
602 case False |
|
603 then show ?thesis |
|
604 unfolding permutation_def |
|
605 using swapidseq_swap[of a b] by blast |
|
606 qed |
|
607 |
|
608 |
|
609 lemma swapidseq_comp_add: "swapidseq n p \<Longrightarrow> swapidseq m q \<Longrightarrow> swapidseq (n + m) (p \<circ> q)" |
|
610 proof (induct n p arbitrary: m q rule: swapidseq.induct) |
|
611 case (id m q) |
|
612 then show ?case by simp |
|
613 next |
|
614 case (comp_Suc n p a b m q) |
|
615 have eq: "Suc n + m = Suc (n + m)" |
|
616 by arith |
|
617 show ?case |
|
618 apply (simp only: eq comp_assoc) |
|
619 apply (rule swapidseq.comp_Suc) |
|
620 using comp_Suc.hyps(2)[OF comp_Suc.prems] comp_Suc.hyps(3) |
|
621 apply blast+ |
|
622 done |
|
623 qed |
|
624 |
|
625 lemma permutation_compose: "permutation p \<Longrightarrow> permutation q \<Longrightarrow> permutation (p \<circ> q)" |
|
626 unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis |
|
627 |
|
628 lemma swapidseq_endswap: "swapidseq n p \<Longrightarrow> a \<noteq> b \<Longrightarrow> swapidseq (Suc n) (p \<circ> Fun.swap a b id)" |
|
629 by (induct n p rule: swapidseq.induct) |
|
630 (use swapidseq_swap[of a b] in \<open>auto simp add: comp_assoc intro: swapidseq.comp_Suc\<close>) |
|
631 |
|
632 lemma swapidseq_inverse_exists: "swapidseq n p \<Longrightarrow> \<exists>q. swapidseq n q \<and> p \<circ> q = id \<and> q \<circ> p = id" |
|
633 proof (induct n p rule: swapidseq.induct) |
|
634 case id |
|
635 then show ?case |
|
636 by (rule exI[where x=id]) simp |
|
637 next |
|
638 case (comp_Suc n p a b) |
|
639 from comp_Suc.hyps obtain q where q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" |
|
640 by blast |
|
641 let ?q = "q \<circ> Fun.swap a b id" |
|
642 note H = comp_Suc.hyps |
|
643 from swapidseq_swap[of a b] H(3) have *: "swapidseq 1 (Fun.swap a b id)" |
|
644 by simp |
|
645 from swapidseq_comp_add[OF q(1) *] have **: "swapidseq (Suc n) ?q" |
|
646 by simp |
|
647 have "Fun.swap a b id \<circ> p \<circ> ?q = Fun.swap a b id \<circ> (p \<circ> q) \<circ> Fun.swap a b id" |
|
648 by (simp add: o_assoc) |
|
649 also have "\<dots> = id" |
|
650 by (simp add: q(2)) |
|
651 finally have ***: "Fun.swap a b id \<circ> p \<circ> ?q = id" . |
|
652 have "?q \<circ> (Fun.swap a b id \<circ> p) = q \<circ> (Fun.swap a b id \<circ> Fun.swap a b id) \<circ> p" |
|
653 by (simp only: o_assoc) |
|
654 then have "?q \<circ> (Fun.swap a b id \<circ> p) = id" |
|
655 by (simp add: q(3)) |
|
656 with ** *** show ?case |
|
657 by blast |
|
658 qed |
|
659 |
|
660 lemma swapidseq_inverse: |
|
661 assumes "swapidseq n p" |
|
662 shows "swapidseq n (inv p)" |
|
663 using swapidseq_inverse_exists[OF assms] inv_unique_comp[of p] by auto |
|
664 |
|
665 lemma permutation_inverse: "permutation p \<Longrightarrow> permutation (inv p)" |
|
666 using permutation_def swapidseq_inverse by blast |
|
667 |
|
668 |
|
669 |
|
670 subsection \<open>Various combinations of transpositions with 2, 1 and 0 common elements\<close> |
|
671 |
|
672 lemma swap_id_common:" a \<noteq> c \<Longrightarrow> b \<noteq> c \<Longrightarrow> |
|
673 Fun.swap a b id \<circ> Fun.swap a c id = Fun.swap b c id \<circ> Fun.swap a b id" |
|
674 by (simp add: fun_eq_iff Fun.swap_def) |
|
675 |
|
676 lemma swap_id_common': "a \<noteq> b \<Longrightarrow> a \<noteq> c \<Longrightarrow> |
|
677 Fun.swap a c id \<circ> Fun.swap b c id = Fun.swap b c id \<circ> Fun.swap a b id" |
|
678 by (simp add: fun_eq_iff Fun.swap_def) |
|
679 |
|
680 lemma swap_id_independent: "a \<noteq> c \<Longrightarrow> a \<noteq> d \<Longrightarrow> b \<noteq> c \<Longrightarrow> b \<noteq> d \<Longrightarrow> |
|
681 Fun.swap a b id \<circ> Fun.swap c d id = Fun.swap c d id \<circ> Fun.swap a b id" |
|
682 by (simp add: fun_eq_iff Fun.swap_def) |
|
683 |
|
684 |
|
685 subsection \<open>The identity map only has even transposition sequences\<close> |
|
686 |
|
687 lemma symmetry_lemma: |
|
688 assumes "\<And>a b c d. P a b c d \<Longrightarrow> P a b d c" |
|
689 and "\<And>a b c d. a \<noteq> b \<Longrightarrow> c \<noteq> d \<Longrightarrow> |
|
690 a = c \<and> b = d \<or> a = c \<and> b \<noteq> d \<or> a \<noteq> c \<and> b = d \<or> a \<noteq> c \<and> a \<noteq> d \<and> b \<noteq> c \<and> b \<noteq> d \<Longrightarrow> |
|
691 P a b c d" |
|
692 shows "\<And>a b c d. a \<noteq> b \<longrightarrow> c \<noteq> d \<longrightarrow> P a b c d" |
|
693 using assms by metis |
|
694 |
|
695 lemma swap_general: "a \<noteq> b \<Longrightarrow> c \<noteq> d \<Longrightarrow> |
|
696 Fun.swap a b id \<circ> Fun.swap c d id = id \<or> |
|
697 (\<exists>x y z. x \<noteq> a \<and> y \<noteq> a \<and> z \<noteq> a \<and> x \<noteq> y \<and> |
|
698 Fun.swap a b id \<circ> Fun.swap c d id = Fun.swap x y id \<circ> Fun.swap a z id)" |
|
699 proof - |
|
700 assume neq: "a \<noteq> b" "c \<noteq> d" |
|
701 have "a \<noteq> b \<longrightarrow> c \<noteq> d \<longrightarrow> |
|
702 (Fun.swap a b id \<circ> Fun.swap c d id = id \<or> |
|
703 (\<exists>x y z. x \<noteq> a \<and> y \<noteq> a \<and> z \<noteq> a \<and> x \<noteq> y \<and> |
|
704 Fun.swap a b id \<circ> Fun.swap c d id = Fun.swap x y id \<circ> Fun.swap a z id))" |
|
705 apply (rule symmetry_lemma[where a=a and b=b and c=c and d=d]) |
|
706 apply (simp_all only: swap_commute) |
|
707 apply (case_tac "a = c \<and> b = d") |
|
708 apply (clarsimp simp only: swap_commute swap_id_idempotent) |
|
709 apply (case_tac "a = c \<and> b \<noteq> d") |
|
710 apply (rule disjI2) |
|
711 apply (rule_tac x="b" in exI) |
|
712 apply (rule_tac x="d" in exI) |
|
713 apply (rule_tac x="b" in exI) |
|
714 apply (clarsimp simp add: fun_eq_iff Fun.swap_def) |
|
715 apply (case_tac "a \<noteq> c \<and> b = d") |
|
716 apply (rule disjI2) |
|
717 apply (rule_tac x="c" in exI) |
|
718 apply (rule_tac x="d" in exI) |
|
719 apply (rule_tac x="c" in exI) |
|
720 apply (clarsimp simp add: fun_eq_iff Fun.swap_def) |
|
721 apply (rule disjI2) |
|
722 apply (rule_tac x="c" in exI) |
|
723 apply (rule_tac x="d" in exI) |
|
724 apply (rule_tac x="b" in exI) |
|
725 apply (clarsimp simp add: fun_eq_iff Fun.swap_def) |
|
726 done |
|
727 with neq show ?thesis by metis |
|
728 qed |
|
729 |
|
730 lemma swapidseq_id_iff[simp]: "swapidseq 0 p \<longleftrightarrow> p = id" |
|
731 using swapidseq.cases[of 0 p "p = id"] by auto |
|
732 |
|
733 lemma swapidseq_cases: "swapidseq n p \<longleftrightarrow> |
|
734 n = 0 \<and> p = id \<or> (\<exists>a b q m. n = Suc m \<and> p = Fun.swap a b id \<circ> q \<and> swapidseq m q \<and> a \<noteq> b)" |
|
735 apply (rule iffI) |
|
736 apply (erule swapidseq.cases[of n p]) |
|
737 apply simp |
|
738 apply (rule disjI2) |
|
739 apply (rule_tac x= "a" in exI) |
|
740 apply (rule_tac x= "b" in exI) |
|
741 apply (rule_tac x= "pa" in exI) |
|
742 apply (rule_tac x= "na" in exI) |
|
743 apply simp |
|
744 apply auto |
|
745 apply (rule comp_Suc, simp_all) |
|
746 done |
|
747 |
|
748 lemma fixing_swapidseq_decrease: |
|
749 assumes "swapidseq n p" |
|
750 and "a \<noteq> b" |
|
751 and "(Fun.swap a b id \<circ> p) a = a" |
|
752 shows "n \<noteq> 0 \<and> swapidseq (n - 1) (Fun.swap a b id \<circ> p)" |
|
753 using assms |
|
754 proof (induct n arbitrary: p a b) |
|
755 case 0 |
|
756 then show ?case |
|
757 by (auto simp add: Fun.swap_def fun_upd_def) |
|
758 next |
|
759 case (Suc n p a b) |
|
760 from Suc.prems(1) swapidseq_cases[of "Suc n" p] |
|
761 obtain c d q m where |
|
762 cdqm: "Suc n = Suc m" "p = Fun.swap c d id \<circ> q" "swapidseq m q" "c \<noteq> d" "n = m" |
|
763 by auto |
|
764 consider "Fun.swap a b id \<circ> Fun.swap c d id = id" |
|
765 | x y z where "x \<noteq> a" "y \<noteq> a" "z \<noteq> a" "x \<noteq> y" |
|
766 "Fun.swap a b id \<circ> Fun.swap c d id = Fun.swap x y id \<circ> Fun.swap a z id" |
|
767 using swap_general[OF Suc.prems(2) cdqm(4)] by metis |
|
768 then show ?case |
|
769 proof cases |
|
770 case 1 |
|
771 then show ?thesis |
|
772 by (simp only: cdqm o_assoc) (simp add: cdqm) |
|
773 next |
|
774 case prems: 2 |
|
775 then have az: "a \<noteq> z" |
|
776 by simp |
|
777 from prems have *: "(Fun.swap x y id \<circ> h) a = a \<longleftrightarrow> h a = a" for h |
|
778 by (simp add: Fun.swap_def) |
|
779 from cdqm(2) have "Fun.swap a b id \<circ> p = Fun.swap a b id \<circ> (Fun.swap c d id \<circ> q)" |
|
780 by simp |
|
781 then have "Fun.swap a b id \<circ> p = Fun.swap x y id \<circ> (Fun.swap a z id \<circ> q)" |
|
782 by (simp add: o_assoc prems) |
|
783 then have "(Fun.swap a b id \<circ> p) a = (Fun.swap x y id \<circ> (Fun.swap a z id \<circ> q)) a" |
|
784 by simp |
|
785 then have "(Fun.swap x y id \<circ> (Fun.swap a z id \<circ> q)) a = a" |
|
786 unfolding Suc by metis |
|
787 then have "(Fun.swap a z id \<circ> q) a = a" |
|
788 by (simp only: *) |
|
789 from Suc.hyps[OF cdqm(3)[ unfolded cdqm(5)[symmetric]] az this] |
|
790 have **: "swapidseq (n - 1) (Fun.swap a z id \<circ> q)" "n \<noteq> 0" |
|
791 by blast+ |
|
792 from \<open>n \<noteq> 0\<close> have ***: "Suc n - 1 = Suc (n - 1)" |
|
793 by auto |
|
794 show ?thesis |
|
795 apply (simp only: cdqm(2) prems o_assoc ***) |
|
796 apply (simp only: Suc_not_Zero simp_thms comp_assoc) |
|
797 apply (rule comp_Suc) |
|
798 using ** prems |
|
799 apply blast+ |
|
800 done |
|
801 qed |
|
802 qed |
|
803 |
|
804 lemma swapidseq_identity_even: |
|
805 assumes "swapidseq n (id :: 'a \<Rightarrow> 'a)" |
|
806 shows "even n" |
|
807 using \<open>swapidseq n id\<close> |
|
808 proof (induct n rule: nat_less_induct) |
|
809 case H: (1 n) |
|
810 consider "n = 0" |
|
811 | a b :: 'a and q m where "n = Suc m" "id = Fun.swap a b id \<circ> q" "swapidseq m q" "a \<noteq> b" |
|
812 using H(2)[unfolded swapidseq_cases[of n id]] by auto |
|
813 then show ?case |
|
814 proof cases |
|
815 case 1 |
|
816 then show ?thesis by presburger |
|
817 next |
|
818 case h: 2 |
|
819 from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]] |
|
820 have m: "m \<noteq> 0" "swapidseq (m - 1) (id :: 'a \<Rightarrow> 'a)" |
|
821 by auto |
|
822 from h m have mn: "m - 1 < n" |
|
823 by arith |
|
824 from H(1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis |
|
825 by presburger |
|
826 qed |
|
827 qed |
|
828 |
|
829 |
|
830 subsection \<open>Therefore we have a welldefined notion of parity\<close> |
|
831 |
|
832 definition "evenperm p = even (SOME n. swapidseq n p)" |
|
833 |
|
834 lemma swapidseq_even_even: |
|
835 assumes m: "swapidseq m p" |
|
836 and n: "swapidseq n p" |
|
837 shows "even m \<longleftrightarrow> even n" |
|
838 proof - |
|
839 from swapidseq_inverse_exists[OF n] obtain q where q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" |
|
840 by blast |
|
841 from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded q]] show ?thesis |
|
842 by arith |
|
843 qed |
|
844 |
|
845 lemma evenperm_unique: |
|
846 assumes p: "swapidseq n p" |
|
847 and n:"even n = b" |
|
848 shows "evenperm p = b" |
|
849 unfolding n[symmetric] evenperm_def |
|
850 apply (rule swapidseq_even_even[where p = p]) |
|
851 apply (rule someI[where x = n]) |
|
852 using p |
|
853 apply blast+ |
|
854 done |
|
855 |
|
856 |
|
857 subsection \<open>And it has the expected composition properties\<close> |
|
858 |
|
859 lemma evenperm_id[simp]: "evenperm id = True" |
|
860 by (rule evenperm_unique[where n = 0]) simp_all |
|
861 |
|
862 lemma evenperm_swap: "evenperm (Fun.swap a b id) = (a = b)" |
|
863 by (rule evenperm_unique[where n="if a = b then 0 else 1"]) (simp_all add: swapidseq_swap) |
|
864 |
|
865 lemma evenperm_comp: |
|
866 assumes "permutation p" "permutation q" |
|
867 shows "evenperm (p \<circ> q) \<longleftrightarrow> evenperm p = evenperm q" |
|
868 proof - |
|
869 from assms obtain n m where n: "swapidseq n p" and m: "swapidseq m q" |
|
870 unfolding permutation_def by blast |
|
871 have "even (n + m) \<longleftrightarrow> (even n \<longleftrightarrow> even m)" |
|
872 by arith |
|
873 from evenperm_unique[OF n refl] evenperm_unique[OF m refl] |
|
874 and evenperm_unique[OF swapidseq_comp_add[OF n m] this] show ?thesis |
|
875 by blast |
|
876 qed |
|
877 |
|
878 lemma evenperm_inv: |
|
879 assumes "permutation p" |
|
880 shows "evenperm (inv p) = evenperm p" |
|
881 proof - |
|
882 from assms obtain n where n: "swapidseq n p" |
|
883 unfolding permutation_def by blast |
|
884 show ?thesis |
|
885 by (rule evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF n refl, symmetric]]) |
|
886 qed |
|
887 |
|
888 |
|
889 subsection \<open>A more abstract characterization of permutations\<close> |
|
890 |
|
891 lemma permutation_bijective: |
|
892 assumes "permutation p" |
|
893 shows "bij p" |
|
894 proof - |
|
895 from assms obtain n where n: "swapidseq n p" |
|
896 unfolding permutation_def by blast |
|
897 from swapidseq_inverse_exists[OF n] obtain q where q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" |
|
898 by blast |
|
899 then show ?thesis |
|
900 unfolding bij_iff |
|
901 apply (auto simp add: fun_eq_iff) |
|
902 apply metis |
|
903 done |
|
904 qed |
|
905 |
|
906 lemma permutation_finite_support: |
|
907 assumes "permutation p" |
|
908 shows "finite {x. p x \<noteq> x}" |
|
909 proof - |
|
910 from assms obtain n where "swapidseq n p" |
|
911 unfolding permutation_def by blast |
|
912 then show ?thesis |
|
913 proof (induct n p rule: swapidseq.induct) |
|
914 case id |
|
915 then show ?case by simp |
|
916 next |
|
917 case (comp_Suc n p a b) |
|
918 let ?S = "insert a (insert b {x. p x \<noteq> x})" |
|
919 from comp_Suc.hyps(2) have *: "finite ?S" |
|
920 by simp |
|
921 from \<open>a \<noteq> b\<close> have **: "{x. (Fun.swap a b id \<circ> p) x \<noteq> x} \<subseteq> ?S" |
|
922 by (auto simp: Fun.swap_def) |
|
923 show ?case |
|
924 by (rule finite_subset[OF ** *]) |
|
925 qed |
|
926 qed |
|
927 |
|
928 lemma permutation_lemma: |
|
929 assumes "finite S" |
|
930 and "bij p" |
|
931 and "\<forall>x. x \<notin> S \<longrightarrow> p x = x" |
|
932 shows "permutation p" |
|
933 using assms |
|
934 proof (induct S arbitrary: p rule: finite_induct) |
|
935 case empty |
|
936 then show ?case |
|
937 by simp |
|
938 next |
|
939 case (insert a F p) |
|
940 let ?r = "Fun.swap a (p a) id \<circ> p" |
|
941 let ?q = "Fun.swap a (p a) id \<circ> ?r" |
|
942 have *: "?r a = a" |
|
943 by (simp add: Fun.swap_def) |
|
944 from insert * have **: "\<forall>x. x \<notin> F \<longrightarrow> ?r x = x" |
|
945 by (metis bij_pointE comp_apply id_apply insert_iff swap_apply(3)) |
|
946 have "bij ?r" |
|
947 by (rule bij_swap_compose_bij[OF insert(4)]) |
|
948 have "permutation ?r" |
|
949 by (rule insert(3)[OF \<open>bij ?r\<close> **]) |
|
950 then have "permutation ?q" |
|
951 by (simp add: permutation_compose permutation_swap_id) |
|
952 then show ?case |
|
953 by (simp add: o_assoc) |
|
954 qed |
|
955 |
|
956 lemma permutation: "permutation p \<longleftrightarrow> bij p \<and> finite {x. p x \<noteq> x}" |
|
957 (is "?lhs \<longleftrightarrow> ?b \<and> ?f") |
|
958 proof |
|
959 assume ?lhs |
|
960 with permutation_bijective permutation_finite_support show "?b \<and> ?f" |
|
961 by auto |
|
962 next |
|
963 assume "?b \<and> ?f" |
|
964 then have "?f" "?b" by blast+ |
|
965 from permutation_lemma[OF this] show ?lhs |
|
966 by blast |
|
967 qed |
|
968 |
|
969 lemma permutation_inverse_works: |
|
970 assumes "permutation p" |
|
971 shows "inv p \<circ> p = id" |
|
972 and "p \<circ> inv p = id" |
|
973 using permutation_bijective [OF assms] by (auto simp: bij_def inj_iff surj_iff) |
|
974 |
|
975 lemma permutation_inverse_compose: |
|
976 assumes p: "permutation p" |
|
977 and q: "permutation q" |
|
978 shows "inv (p \<circ> q) = inv q \<circ> inv p" |
|
979 proof - |
|
980 note ps = permutation_inverse_works[OF p] |
|
981 note qs = permutation_inverse_works[OF q] |
|
982 have "p \<circ> q \<circ> (inv q \<circ> inv p) = p \<circ> (q \<circ> inv q) \<circ> inv p" |
|
983 by (simp add: o_assoc) |
|
984 also have "\<dots> = id" |
|
985 by (simp add: ps qs) |
|
986 finally have *: "p \<circ> q \<circ> (inv q \<circ> inv p) = id" . |
|
987 have "inv q \<circ> inv p \<circ> (p \<circ> q) = inv q \<circ> (inv p \<circ> p) \<circ> q" |
|
988 by (simp add: o_assoc) |
|
989 also have "\<dots> = id" |
|
990 by (simp add: ps qs) |
|
991 finally have **: "inv q \<circ> inv p \<circ> (p \<circ> q) = id" . |
|
992 show ?thesis |
|
993 by (rule inv_unique_comp[OF * **]) |
|
994 qed |
|
995 |
|
996 |
|
997 subsection \<open>Relation to \<open>permutes\<close>\<close> |
|
998 |
|
999 lemma permutes_imp_permutation: |
|
1000 \<open>permutation p\<close> if \<open>finite S\<close> \<open>p permutes S\<close> |
|
1001 proof - |
|
1002 from \<open>p permutes S\<close> have \<open>{x. p x \<noteq> x} \<subseteq> S\<close> |
|
1003 by (auto dest: permutes_not_in) |
|
1004 then have \<open>finite {x. p x \<noteq> x}\<close> |
|
1005 using \<open>finite S\<close> by (rule finite_subset) |
|
1006 moreover from \<open>p permutes S\<close> have \<open>bij p\<close> |
|
1007 by (auto dest: permutes_bij) |
|
1008 ultimately show ?thesis |
|
1009 by (simp add: permutation) |
|
1010 qed |
|
1011 |
|
1012 lemma permutation_permutesE: |
|
1013 assumes \<open>permutation p\<close> |
|
1014 obtains S where \<open>finite S\<close> \<open>p permutes S\<close> |
|
1015 proof - |
|
1016 from assms have fin: \<open>finite {x. p x \<noteq> x}\<close> |
|
1017 by (simp add: permutation) |
|
1018 from assms have \<open>bij p\<close> |
|
1019 by (simp add: permutation) |
|
1020 also have \<open>UNIV = {x. p x \<noteq> x} \<union> {x. p x = x}\<close> |
|
1021 by auto |
|
1022 finally have \<open>bij_betw p {x. p x \<noteq> x} {x. p x \<noteq> x}\<close> |
|
1023 by (rule bij_betw_partition) (auto simp add: bij_betw_fixpoints) |
|
1024 then have \<open>p permutes {x. p x \<noteq> x}\<close> |
|
1025 by (auto intro: bij_imp_permutes) |
|
1026 with fin show thesis .. |
|
1027 qed |
|
1028 |
|
1029 lemma permutation_permutes: "permutation p \<longleftrightarrow> (\<exists>S. finite S \<and> p permutes S)" |
|
1030 by (auto elim: permutation_permutesE intro: permutes_imp_permutation) |
|
1031 |
|
1032 |
|
1033 subsection \<open>Sign of a permutation as a real number\<close> |
|
1034 |
|
1035 definition sign :: \<open>('a \<Rightarrow> 'a) \<Rightarrow> int\<close> \<comment> \<open>TODO: prefer less generic name\<close> |
|
1036 where \<open>sign p = (if evenperm p then (1::int) else -1)\<close> |
|
1037 |
|
1038 lemma sign_nz: "sign p \<noteq> 0" |
|
1039 by (simp add: sign_def) |
|
1040 |
|
1041 lemma sign_id: "sign id = 1" |
|
1042 by (simp add: sign_def) |
|
1043 |
|
1044 lemma sign_inverse: "permutation p \<Longrightarrow> sign (inv p) = sign p" |
|
1045 by (simp add: sign_def evenperm_inv) |
|
1046 |
|
1047 lemma sign_compose: "permutation p \<Longrightarrow> permutation q \<Longrightarrow> sign (p \<circ> q) = sign p * sign q" |
|
1048 by (simp add: sign_def evenperm_comp) |
|
1049 |
|
1050 lemma sign_swap_id: "sign (Fun.swap a b id) = (if a = b then 1 else -1)" |
|
1051 by (simp add: sign_def evenperm_swap) |
|
1052 |
|
1053 lemma sign_idempotent: "sign p * sign p = 1" |
|
1054 by (simp add: sign_def) |
|
1055 |
|
1056 |
|
1057 subsection \<open>Permuting a list\<close> |
|
1058 |
|
1059 text \<open>This function permutes a list by applying a permutation to the indices.\<close> |
|
1060 |
|
1061 definition permute_list :: "(nat \<Rightarrow> nat) \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
1062 where "permute_list f xs = map (\<lambda>i. xs ! (f i)) [0..<length xs]" |
|
1063 |
|
1064 lemma permute_list_map: |
|
1065 assumes "f permutes {..<length xs}" |
|
1066 shows "permute_list f (map g xs) = map g (permute_list f xs)" |
|
1067 using permutes_in_image[OF assms] by (auto simp: permute_list_def) |
|
1068 |
|
1069 lemma permute_list_nth: |
|
1070 assumes "f permutes {..<length xs}" "i < length xs" |
|
1071 shows "permute_list f xs ! i = xs ! f i" |
|
1072 using permutes_in_image[OF assms(1)] assms(2) |
|
1073 by (simp add: permute_list_def) |
|
1074 |
|
1075 lemma permute_list_Nil [simp]: "permute_list f [] = []" |
|
1076 by (simp add: permute_list_def) |
|
1077 |
|
1078 lemma length_permute_list [simp]: "length (permute_list f xs) = length xs" |
|
1079 by (simp add: permute_list_def) |
|
1080 |
|
1081 lemma permute_list_compose: |
|
1082 assumes "g permutes {..<length xs}" |
|
1083 shows "permute_list (f \<circ> g) xs = permute_list g (permute_list f xs)" |
|
1084 using assms[THEN permutes_in_image] by (auto simp add: permute_list_def) |
|
1085 |
|
1086 lemma permute_list_ident [simp]: "permute_list (\<lambda>x. x) xs = xs" |
|
1087 by (simp add: permute_list_def map_nth) |
|
1088 |
|
1089 lemma permute_list_id [simp]: "permute_list id xs = xs" |
|
1090 by (simp add: id_def) |
|
1091 |
|
1092 lemma mset_permute_list [simp]: |
|
1093 fixes xs :: "'a list" |
|
1094 assumes "f permutes {..<length xs}" |
|
1095 shows "mset (permute_list f xs) = mset xs" |
|
1096 proof (rule multiset_eqI) |
|
1097 fix y :: 'a |
|
1098 from assms have [simp]: "f x < length xs \<longleftrightarrow> x < length xs" for x |
|
1099 using permutes_in_image[OF assms] by auto |
|
1100 have "count (mset (permute_list f xs)) y = card ((\<lambda>i. xs ! f i) -` {y} \<inter> {..<length xs})" |
|
1101 by (simp add: permute_list_def count_image_mset atLeast0LessThan) |
|
1102 also have "(\<lambda>i. xs ! f i) -` {y} \<inter> {..<length xs} = f -` {i. i < length xs \<and> y = xs ! i}" |
|
1103 by auto |
|
1104 also from assms have "card \<dots> = card {i. i < length xs \<and> y = xs ! i}" |
|
1105 by (intro card_vimage_inj) (auto simp: permutes_inj permutes_surj) |
|
1106 also have "\<dots> = count (mset xs) y" |
|
1107 by (simp add: count_mset length_filter_conv_card) |
|
1108 finally show "count (mset (permute_list f xs)) y = count (mset xs) y" |
|
1109 by simp |
|
1110 qed |
|
1111 |
|
1112 lemma set_permute_list [simp]: |
|
1113 assumes "f permutes {..<length xs}" |
|
1114 shows "set (permute_list f xs) = set xs" |
|
1115 by (rule mset_eq_setD[OF mset_permute_list]) fact |
|
1116 |
|
1117 lemma distinct_permute_list [simp]: |
|
1118 assumes "f permutes {..<length xs}" |
|
1119 shows "distinct (permute_list f xs) = distinct xs" |
|
1120 by (simp add: distinct_count_atmost_1 assms) |
|
1121 |
|
1122 lemma permute_list_zip: |
|
1123 assumes "f permutes A" "A = {..<length xs}" |
|
1124 assumes [simp]: "length xs = length ys" |
|
1125 shows "permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)" |
|
1126 proof - |
|
1127 from permutes_in_image[OF assms(1)] assms(2) have *: "f i < length ys \<longleftrightarrow> i < length ys" for i |
|
1128 by simp |
|
1129 have "permute_list f (zip xs ys) = map (\<lambda>i. zip xs ys ! f i) [0..<length ys]" |
|
1130 by (simp_all add: permute_list_def zip_map_map) |
|
1131 also have "\<dots> = map (\<lambda>(x, y). (xs ! f x, ys ! f y)) (zip [0..<length ys] [0..<length ys])" |
|
1132 by (intro nth_equalityI) (simp_all add: *) |
|
1133 also have "\<dots> = zip (permute_list f xs) (permute_list f ys)" |
|
1134 by (simp_all add: permute_list_def zip_map_map) |
|
1135 finally show ?thesis . |
|
1136 qed |
|
1137 |
|
1138 lemma map_of_permute: |
|
1139 assumes "\<sigma> permutes fst ` set xs" |
|
1140 shows "map_of xs \<circ> \<sigma> = map_of (map (\<lambda>(x,y). (inv \<sigma> x, y)) xs)" |
|
1141 (is "_ = map_of (map ?f _)") |
|
1142 proof |
|
1143 from assms have "inj \<sigma>" "surj \<sigma>" |
|
1144 by (simp_all add: permutes_inj permutes_surj) |
|
1145 then show "(map_of xs \<circ> \<sigma>) x = map_of (map ?f xs) x" for x |
|
1146 by (induct xs) (auto simp: inv_f_f surj_f_inv_f) |
|
1147 qed |
|
1148 |
|
1149 |
|
1150 subsection \<open>More lemmas about permutations\<close> |
|
1151 |
|
1152 text \<open>The following few lemmas were contributed by Lukas Bulwahn.\<close> |
|
1153 |
|
1154 lemma count_image_mset_eq_card_vimage: |
|
1155 assumes "finite A" |
|
1156 shows "count (image_mset f (mset_set A)) b = card {a \<in> A. f a = b}" |
|
1157 using assms |
|
1158 proof (induct A) |
|
1159 case empty |
|
1160 show ?case by simp |
|
1161 next |
|
1162 case (insert x F) |
|
1163 show ?case |
|
1164 proof (cases "f x = b") |
|
1165 case True |
|
1166 with insert.hyps |
|
1167 have "count (image_mset f (mset_set (insert x F))) b = Suc (card {a \<in> F. f a = f x})" |
|
1168 by auto |
|
1169 also from insert.hyps(1,2) have "\<dots> = card (insert x {a \<in> F. f a = f x})" |
|
1170 by simp |
|
1171 also from \<open>f x = b\<close> have "card (insert x {a \<in> F. f a = f x}) = card {a \<in> insert x F. f a = b}" |
|
1172 by (auto intro: arg_cong[where f="card"]) |
|
1173 finally show ?thesis |
|
1174 using insert by auto |
|
1175 next |
|
1176 case False |
|
1177 then have "{a \<in> F. f a = b} = {a \<in> insert x F. f a = b}" |
|
1178 by auto |
|
1179 with insert False show ?thesis |
|
1180 by simp |
|
1181 qed |
|
1182 qed |
|
1183 |
|
1184 \<comment> \<open>Prove \<open>image_mset_eq_implies_permutes\<close> ...\<close> |
|
1185 lemma image_mset_eq_implies_permutes: |
|
1186 fixes f :: "'a \<Rightarrow> 'b" |
|
1187 assumes "finite A" |
|
1188 and mset_eq: "image_mset f (mset_set A) = image_mset f' (mset_set A)" |
|
1189 obtains p where "p permutes A" and "\<forall>x\<in>A. f x = f' (p x)" |
|
1190 proof - |
|
1191 from \<open>finite A\<close> have [simp]: "finite {a \<in> A. f a = (b::'b)}" for f b by auto |
|
1192 have "f ` A = f' ` A" |
|
1193 proof - |
|
1194 from \<open>finite A\<close> have "f ` A = f ` (set_mset (mset_set A))" |
|
1195 by simp |
|
1196 also have "\<dots> = f' ` set_mset (mset_set A)" |
|
1197 by (metis mset_eq multiset.set_map) |
|
1198 also from \<open>finite A\<close> have "\<dots> = f' ` A" |
|
1199 by simp |
|
1200 finally show ?thesis . |
|
1201 qed |
|
1202 have "\<forall>b\<in>(f ` A). \<exists>p. bij_betw p {a \<in> A. f a = b} {a \<in> A. f' a = b}" |
|
1203 proof |
|
1204 fix b |
|
1205 from mset_eq have "count (image_mset f (mset_set A)) b = count (image_mset f' (mset_set A)) b" |
|
1206 by simp |
|
1207 with \<open>finite A\<close> have "card {a \<in> A. f a = b} = card {a \<in> A. f' a = b}" |
|
1208 by (simp add: count_image_mset_eq_card_vimage) |
|
1209 then show "\<exists>p. bij_betw p {a\<in>A. f a = b} {a \<in> A. f' a = b}" |
|
1210 by (intro finite_same_card_bij) simp_all |
|
1211 qed |
|
1212 then have "\<exists>p. \<forall>b\<in>f ` A. bij_betw (p b) {a \<in> A. f a = b} {a \<in> A. f' a = b}" |
|
1213 by (rule bchoice) |
|
1214 then obtain p where p: "\<forall>b\<in>f ` A. bij_betw (p b) {a \<in> A. f a = b} {a \<in> A. f' a = b}" .. |
|
1215 define p' where "p' = (\<lambda>a. if a \<in> A then p (f a) a else a)" |
|
1216 have "p' permutes A" |
|
1217 proof (rule bij_imp_permutes) |
|
1218 have "disjoint_family_on (\<lambda>i. {a \<in> A. f' a = i}) (f ` A)" |
|
1219 by (auto simp: disjoint_family_on_def) |
|
1220 moreover |
|
1221 have "bij_betw (\<lambda>a. p (f a) a) {a \<in> A. f a = b} {a \<in> A. f' a = b}" if "b \<in> f ` A" for b |
|
1222 using p that by (subst bij_betw_cong[where g="p b"]) auto |
|
1223 ultimately |
|
1224 have "bij_betw (\<lambda>a. p (f a) a) (\<Union>b\<in>f ` A. {a \<in> A. f a = b}) (\<Union>b\<in>f ` A. {a \<in> A. f' a = b})" |
|
1225 by (rule bij_betw_UNION_disjoint) |
|
1226 moreover have "(\<Union>b\<in>f ` A. {a \<in> A. f a = b}) = A" |
|
1227 by auto |
|
1228 moreover from \<open>f ` A = f' ` A\<close> have "(\<Union>b\<in>f ` A. {a \<in> A. f' a = b}) = A" |
|
1229 by auto |
|
1230 ultimately show "bij_betw p' A A" |
|
1231 unfolding p'_def by (subst bij_betw_cong[where g="(\<lambda>a. p (f a) a)"]) auto |
|
1232 next |
|
1233 show "\<And>x. x \<notin> A \<Longrightarrow> p' x = x" |
|
1234 by (simp add: p'_def) |
|
1235 qed |
|
1236 moreover from p have "\<forall>x\<in>A. f x = f' (p' x)" |
|
1237 unfolding p'_def using bij_betwE by fastforce |
|
1238 ultimately show ?thesis .. |
|
1239 qed |
|
1240 |
|
1241 \<comment> \<open>... and derive the existing property:\<close> |
|
1242 lemma mset_eq_permutation: |
|
1243 fixes xs ys :: "'a list" |
|
1244 assumes mset_eq: "mset xs = mset ys" |
|
1245 obtains p where "p permutes {..<length ys}" "permute_list p ys = xs" |
|
1246 proof - |
|
1247 from mset_eq have length_eq: "length xs = length ys" |
|
1248 by (rule mset_eq_length) |
|
1249 have "mset_set {..<length ys} = mset [0..<length ys]" |
|
1250 by (rule mset_set_upto_eq_mset_upto) |
|
1251 with mset_eq length_eq have "image_mset (\<lambda>i. xs ! i) (mset_set {..<length ys}) = |
|
1252 image_mset (\<lambda>i. ys ! i) (mset_set {..<length ys})" |
|
1253 by (metis map_nth mset_map) |
|
1254 from image_mset_eq_implies_permutes[OF _ this] |
|
1255 obtain p where p: "p permutes {..<length ys}" and "\<forall>i\<in>{..<length ys}. xs ! i = ys ! (p i)" |
|
1256 by auto |
|
1257 with length_eq have "permute_list p ys = xs" |
|
1258 by (auto intro!: nth_equalityI simp: permute_list_nth) |
|
1259 with p show thesis .. |
|
1260 qed |
|
1261 |
|
1262 lemma permutes_natset_le: |
|
1263 fixes S :: "'a::wellorder set" |
|
1264 assumes "p permutes S" |
|
1265 and "\<forall>i \<in> S. p i \<le> i" |
|
1266 shows "p = id" |
|
1267 proof - |
|
1268 have "p n = n" for n |
|
1269 using assms |
|
1270 proof (induct n arbitrary: S rule: less_induct) |
|
1271 case (less n) |
|
1272 show ?case |
|
1273 proof (cases "n \<in> S") |
|
1274 case False |
|
1275 with less(2) show ?thesis |
|
1276 unfolding permutes_def by metis |
|
1277 next |
|
1278 case True |
|
1279 with less(3) have "p n < n \<or> p n = n" |
|
1280 by auto |
|
1281 then show ?thesis |
|
1282 proof |
|
1283 assume "p n < n" |
|
1284 with less have "p (p n) = p n" |
|
1285 by metis |
|
1286 with permutes_inj[OF less(2)] have "p n = n" |
|
1287 unfolding inj_def by blast |
|
1288 with \<open>p n < n\<close> have False |
|
1289 by simp |
|
1290 then show ?thesis .. |
|
1291 qed |
|
1292 qed |
|
1293 qed |
|
1294 then show ?thesis by (auto simp: fun_eq_iff) |
|
1295 qed |
|
1296 |
|
1297 lemma permutes_natset_ge: |
|
1298 fixes S :: "'a::wellorder set" |
|
1299 assumes p: "p permutes S" |
|
1300 and le: "\<forall>i \<in> S. p i \<ge> i" |
|
1301 shows "p = id" |
|
1302 proof - |
|
1303 have "i \<ge> inv p i" if "i \<in> S" for i |
|
1304 proof - |
|
1305 from that permutes_in_image[OF permutes_inv[OF p]] have "inv p i \<in> S" |
|
1306 by simp |
|
1307 with le have "p (inv p i) \<ge> inv p i" |
|
1308 by blast |
|
1309 with permutes_inverses[OF p] show ?thesis |
|
1310 by simp |
|
1311 qed |
|
1312 then have "\<forall>i\<in>S. inv p i \<le> i" |
|
1313 by blast |
|
1314 from permutes_natset_le[OF permutes_inv[OF p] this] have "inv p = inv id" |
|
1315 by simp |
|
1316 then show ?thesis |
|
1317 apply (subst permutes_inv_inv[OF p, symmetric]) |
|
1318 apply (rule inv_unique_comp) |
|
1319 apply simp_all |
|
1320 done |
|
1321 qed |
|
1322 |
|
1323 lemma image_inverse_permutations: "{inv p |p. p permutes S} = {p. p permutes S}" |
|
1324 apply (rule set_eqI) |
|
1325 apply auto |
|
1326 using permutes_inv_inv permutes_inv |
|
1327 apply auto |
|
1328 apply (rule_tac x="inv x" in exI) |
|
1329 apply auto |
|
1330 done |
|
1331 |
|
1332 lemma image_compose_permutations_left: |
|
1333 assumes "q permutes S" |
|
1334 shows "{q \<circ> p |p. p permutes S} = {p. p permutes S}" |
|
1335 apply (rule set_eqI) |
|
1336 apply auto |
|
1337 apply (rule permutes_compose) |
|
1338 using assms |
|
1339 apply auto |
|
1340 apply (rule_tac x = "inv q \<circ> x" in exI) |
|
1341 apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o) |
|
1342 done |
|
1343 |
|
1344 lemma image_compose_permutations_right: |
|
1345 assumes "q permutes S" |
|
1346 shows "{p \<circ> q | p. p permutes S} = {p . p permutes S}" |
|
1347 apply (rule set_eqI) |
|
1348 apply auto |
|
1349 apply (rule permutes_compose) |
|
1350 using assms |
|
1351 apply auto |
|
1352 apply (rule_tac x = "x \<circ> inv q" in exI) |
|
1353 apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o comp_assoc) |
|
1354 done |
|
1355 |
|
1356 lemma permutes_in_seg: "p permutes {1 ..n} \<Longrightarrow> i \<in> {1..n} \<Longrightarrow> 1 \<le> p i \<and> p i \<le> n" |
|
1357 by (simp add: permutes_def) metis |
|
1358 |
|
1359 lemma sum_permutations_inverse: "sum f {p. p permutes S} = sum (\<lambda>p. f(inv p)) {p. p permutes S}" |
|
1360 (is "?lhs = ?rhs") |
|
1361 proof - |
|
1362 let ?S = "{p . p permutes S}" |
|
1363 have *: "inj_on inv ?S" |
|
1364 proof (auto simp add: inj_on_def) |
|
1365 fix q r |
|
1366 assume q: "q permutes S" |
|
1367 and r: "r permutes S" |
|
1368 and qr: "inv q = inv r" |
|
1369 then have "inv (inv q) = inv (inv r)" |
|
1370 by simp |
|
1371 with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show "q = r" |
|
1372 by metis |
|
1373 qed |
|
1374 have **: "inv ` ?S = ?S" |
|
1375 using image_inverse_permutations by blast |
|
1376 have ***: "?rhs = sum (f \<circ> inv) ?S" |
|
1377 by (simp add: o_def) |
|
1378 from sum.reindex[OF *, of f] show ?thesis |
|
1379 by (simp only: ** ***) |
|
1380 qed |
|
1381 |
|
1382 lemma setum_permutations_compose_left: |
|
1383 assumes q: "q permutes S" |
|
1384 shows "sum f {p. p permutes S} = sum (\<lambda>p. f(q \<circ> p)) {p. p permutes S}" |
|
1385 (is "?lhs = ?rhs") |
|
1386 proof - |
|
1387 let ?S = "{p. p permutes S}" |
|
1388 have *: "?rhs = sum (f \<circ> ((\<circ>) q)) ?S" |
|
1389 by (simp add: o_def) |
|
1390 have **: "inj_on ((\<circ>) q) ?S" |
|
1391 proof (auto simp add: inj_on_def) |
|
1392 fix p r |
|
1393 assume "p permutes S" |
|
1394 and r: "r permutes S" |
|
1395 and rp: "q \<circ> p = q \<circ> r" |
|
1396 then have "inv q \<circ> q \<circ> p = inv q \<circ> q \<circ> r" |
|
1397 by (simp add: comp_assoc) |
|
1398 with permutes_inj[OF q, unfolded inj_iff] show "p = r" |
|
1399 by simp |
|
1400 qed |
|
1401 have "((\<circ>) q) ` ?S = ?S" |
|
1402 using image_compose_permutations_left[OF q] by auto |
|
1403 with * sum.reindex[OF **, of f] show ?thesis |
|
1404 by (simp only:) |
|
1405 qed |
|
1406 |
|
1407 lemma sum_permutations_compose_right: |
|
1408 assumes q: "q permutes S" |
|
1409 shows "sum f {p. p permutes S} = sum (\<lambda>p. f(p \<circ> q)) {p. p permutes S}" |
|
1410 (is "?lhs = ?rhs") |
|
1411 proof - |
|
1412 let ?S = "{p. p permutes S}" |
|
1413 have *: "?rhs = sum (f \<circ> (\<lambda>p. p \<circ> q)) ?S" |
|
1414 by (simp add: o_def) |
|
1415 have **: "inj_on (\<lambda>p. p \<circ> q) ?S" |
|
1416 proof (auto simp add: inj_on_def) |
|
1417 fix p r |
|
1418 assume "p permutes S" |
|
1419 and r: "r permutes S" |
|
1420 and rp: "p \<circ> q = r \<circ> q" |
|
1421 then have "p \<circ> (q \<circ> inv q) = r \<circ> (q \<circ> inv q)" |
|
1422 by (simp add: o_assoc) |
|
1423 with permutes_surj[OF q, unfolded surj_iff] show "p = r" |
|
1424 by simp |
|
1425 qed |
|
1426 from image_compose_permutations_right[OF q] have "(\<lambda>p. p \<circ> q) ` ?S = ?S" |
|
1427 by auto |
|
1428 with * sum.reindex[OF **, of f] show ?thesis |
|
1429 by (simp only:) |
|
1430 qed |
|
1431 |
|
1432 |
|
1433 subsection \<open>Sum over a set of permutations (could generalize to iteration)\<close> |
|
1434 |
|
1435 lemma sum_over_permutations_insert: |
|
1436 assumes fS: "finite S" |
|
1437 and aS: "a \<notin> S" |
|
1438 shows "sum f {p. p permutes (insert a S)} = |
|
1439 sum (\<lambda>b. sum (\<lambda>q. f (Fun.swap a b id \<circ> q)) {p. p permutes S}) (insert a S)" |
|
1440 proof - |
|
1441 have *: "\<And>f a b. (\<lambda>(b, p). f (Fun.swap a b id \<circ> p)) = f \<circ> (\<lambda>(b,p). Fun.swap a b id \<circ> p)" |
|
1442 by (simp add: fun_eq_iff) |
|
1443 have **: "\<And>P Q. {(a, b). a \<in> P \<and> b \<in> Q} = P \<times> Q" |
|
1444 by blast |
|
1445 show ?thesis |
|
1446 unfolding * ** sum.cartesian_product permutes_insert |
|
1447 proof (rule sum.reindex) |
|
1448 let ?f = "(\<lambda>(b, y). Fun.swap a b id \<circ> y)" |
|
1449 let ?P = "{p. p permutes S}" |
|
1450 { |
|
1451 fix b c p q |
|
1452 assume b: "b \<in> insert a S" |
|
1453 assume c: "c \<in> insert a S" |
|
1454 assume p: "p permutes S" |
|
1455 assume q: "q permutes S" |
|
1456 assume eq: "Fun.swap a b id \<circ> p = Fun.swap a c id \<circ> q" |
|
1457 from p q aS have pa: "p a = a" and qa: "q a = a" |
|
1458 unfolding permutes_def by metis+ |
|
1459 from eq have "(Fun.swap a b id \<circ> p) a = (Fun.swap a c id \<circ> q) a" |
|
1460 by simp |
|
1461 then have bc: "b = c" |
|
1462 by (simp add: permutes_def pa qa o_def fun_upd_def Fun.swap_def id_def |
|
1463 cong del: if_weak_cong split: if_split_asm) |
|
1464 from eq[unfolded bc] have "(\<lambda>p. Fun.swap a c id \<circ> p) (Fun.swap a c id \<circ> p) = |
|
1465 (\<lambda>p. Fun.swap a c id \<circ> p) (Fun.swap a c id \<circ> q)" by simp |
|
1466 then have "p = q" |
|
1467 unfolding o_assoc swap_id_idempotent by simp |
|
1468 with bc have "b = c \<and> p = q" |
|
1469 by blast |
|
1470 } |
|
1471 then show "inj_on ?f (insert a S \<times> ?P)" |
|
1472 unfolding inj_on_def by clarify metis |
|
1473 qed |
|
1474 qed |
|
1475 |
|
1476 |
|
1477 subsection \<open>Constructing permutations from association lists\<close> |
|
1478 |
|
1479 definition list_permutes :: "('a \<times> 'a) list \<Rightarrow> 'a set \<Rightarrow> bool" |
|
1480 where "list_permutes xs A \<longleftrightarrow> |
|
1481 set (map fst xs) \<subseteq> A \<and> |
|
1482 set (map snd xs) = set (map fst xs) \<and> |
|
1483 distinct (map fst xs) \<and> |
|
1484 distinct (map snd xs)" |
|
1485 |
|
1486 lemma list_permutesI [simp]: |
|
1487 assumes "set (map fst xs) \<subseteq> A" "set (map snd xs) = set (map fst xs)" "distinct (map fst xs)" |
|
1488 shows "list_permutes xs A" |
|
1489 proof - |
|
1490 from assms(2,3) have "distinct (map snd xs)" |
|
1491 by (intro card_distinct) (simp_all add: distinct_card del: set_map) |
|
1492 with assms show ?thesis |
|
1493 by (simp add: list_permutes_def) |
|
1494 qed |
|
1495 |
|
1496 definition permutation_of_list :: "('a \<times> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" |
|
1497 where "permutation_of_list xs x = (case map_of xs x of None \<Rightarrow> x | Some y \<Rightarrow> y)" |
|
1498 |
|
1499 lemma permutation_of_list_Cons: |
|
1500 "permutation_of_list ((x, y) # xs) x' = (if x = x' then y else permutation_of_list xs x')" |
|
1501 by (simp add: permutation_of_list_def) |
|
1502 |
|
1503 fun inverse_permutation_of_list :: "('a \<times> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" |
|
1504 where |
|
1505 "inverse_permutation_of_list [] x = x" |
|
1506 | "inverse_permutation_of_list ((y, x') # xs) x = |
|
1507 (if x = x' then y else inverse_permutation_of_list xs x)" |
|
1508 |
|
1509 declare inverse_permutation_of_list.simps [simp del] |
|
1510 |
|
1511 lemma inj_on_map_of: |
|
1512 assumes "distinct (map snd xs)" |
|
1513 shows "inj_on (map_of xs) (set (map fst xs))" |
|
1514 proof (rule inj_onI) |
|
1515 fix x y |
|
1516 assume xy: "x \<in> set (map fst xs)" "y \<in> set (map fst xs)" |
|
1517 assume eq: "map_of xs x = map_of xs y" |
|
1518 from xy obtain x' y' where x'y': "map_of xs x = Some x'" "map_of xs y = Some y'" |
|
1519 by (cases "map_of xs x"; cases "map_of xs y") (simp_all add: map_of_eq_None_iff) |
|
1520 moreover from x'y' have *: "(x, x') \<in> set xs" "(y, y') \<in> set xs" |
|
1521 by (force dest: map_of_SomeD)+ |
|
1522 moreover from * eq x'y' have "x' = y'" |
|
1523 by simp |
|
1524 ultimately show "x = y" |
|
1525 using assms by (force simp: distinct_map dest: inj_onD[of _ _ "(x,x')" "(y,y')"]) |
|
1526 qed |
|
1527 |
|
1528 lemma inj_on_the: "None \<notin> A \<Longrightarrow> inj_on the A" |
|
1529 by (auto simp: inj_on_def option.the_def split: option.splits) |
|
1530 |
|
1531 lemma inj_on_map_of': |
|
1532 assumes "distinct (map snd xs)" |
|
1533 shows "inj_on (the \<circ> map_of xs) (set (map fst xs))" |
|
1534 by (intro comp_inj_on inj_on_map_of assms inj_on_the) |
|
1535 (force simp: eq_commute[of None] map_of_eq_None_iff) |
|
1536 |
|
1537 lemma image_map_of: |
|
1538 assumes "distinct (map fst xs)" |
|
1539 shows "map_of xs ` set (map fst xs) = Some ` set (map snd xs)" |
|
1540 using assms by (auto simp: rev_image_eqI) |
|
1541 |
|
1542 lemma the_Some_image [simp]: "the ` Some ` A = A" |
|
1543 by (subst image_image) simp |
|
1544 |
|
1545 lemma image_map_of': |
|
1546 assumes "distinct (map fst xs)" |
|
1547 shows "(the \<circ> map_of xs) ` set (map fst xs) = set (map snd xs)" |
|
1548 by (simp only: image_comp [symmetric] image_map_of assms the_Some_image) |
|
1549 |
|
1550 lemma permutation_of_list_permutes [simp]: |
|
1551 assumes "list_permutes xs A" |
|
1552 shows "permutation_of_list xs permutes A" |
|
1553 (is "?f permutes _") |
|
1554 proof (rule permutes_subset[OF bij_imp_permutes]) |
|
1555 from assms show "set (map fst xs) \<subseteq> A" |
|
1556 by (simp add: list_permutes_def) |
|
1557 from assms have "inj_on (the \<circ> map_of xs) (set (map fst xs))" (is ?P) |
|
1558 by (intro inj_on_map_of') (simp_all add: list_permutes_def) |
|
1559 also have "?P \<longleftrightarrow> inj_on ?f (set (map fst xs))" |
|
1560 by (intro inj_on_cong) |
|
1561 (auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits) |
|
1562 finally have "bij_betw ?f (set (map fst xs)) (?f ` set (map fst xs))" |
|
1563 by (rule inj_on_imp_bij_betw) |
|
1564 also from assms have "?f ` set (map fst xs) = (the \<circ> map_of xs) ` set (map fst xs)" |
|
1565 by (intro image_cong refl) |
|
1566 (auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits) |
|
1567 also from assms have "\<dots> = set (map fst xs)" |
|
1568 by (subst image_map_of') (simp_all add: list_permutes_def) |
|
1569 finally show "bij_betw ?f (set (map fst xs)) (set (map fst xs))" . |
|
1570 qed (force simp: permutation_of_list_def dest!: map_of_SomeD split: option.splits)+ |
|
1571 |
|
1572 lemma eval_permutation_of_list [simp]: |
|
1573 "permutation_of_list [] x = x" |
|
1574 "x = x' \<Longrightarrow> permutation_of_list ((x',y)#xs) x = y" |
|
1575 "x \<noteq> x' \<Longrightarrow> permutation_of_list ((x',y')#xs) x = permutation_of_list xs x" |
|
1576 by (simp_all add: permutation_of_list_def) |
|
1577 |
|
1578 lemma eval_inverse_permutation_of_list [simp]: |
|
1579 "inverse_permutation_of_list [] x = x" |
|
1580 "x = x' \<Longrightarrow> inverse_permutation_of_list ((y,x')#xs) x = y" |
|
1581 "x \<noteq> x' \<Longrightarrow> inverse_permutation_of_list ((y',x')#xs) x = inverse_permutation_of_list xs x" |
|
1582 by (simp_all add: inverse_permutation_of_list.simps) |
|
1583 |
|
1584 lemma permutation_of_list_id: "x \<notin> set (map fst xs) \<Longrightarrow> permutation_of_list xs x = x" |
|
1585 by (induct xs) (auto simp: permutation_of_list_Cons) |
|
1586 |
|
1587 lemma permutation_of_list_unique': |
|
1588 "distinct (map fst xs) \<Longrightarrow> (x, y) \<in> set xs \<Longrightarrow> permutation_of_list xs x = y" |
|
1589 by (induct xs) (force simp: permutation_of_list_Cons)+ |
|
1590 |
|
1591 lemma permutation_of_list_unique: |
|
1592 "list_permutes xs A \<Longrightarrow> (x, y) \<in> set xs \<Longrightarrow> permutation_of_list xs x = y" |
|
1593 by (intro permutation_of_list_unique') (simp_all add: list_permutes_def) |
|
1594 |
|
1595 lemma inverse_permutation_of_list_id: |
|
1596 "x \<notin> set (map snd xs) \<Longrightarrow> inverse_permutation_of_list xs x = x" |
|
1597 by (induct xs) auto |
|
1598 |
|
1599 lemma inverse_permutation_of_list_unique': |
|
1600 "distinct (map snd xs) \<Longrightarrow> (x, y) \<in> set xs \<Longrightarrow> inverse_permutation_of_list xs y = x" |
|
1601 by (induct xs) (force simp: inverse_permutation_of_list.simps(2))+ |
|
1602 |
|
1603 lemma inverse_permutation_of_list_unique: |
|
1604 "list_permutes xs A \<Longrightarrow> (x,y) \<in> set xs \<Longrightarrow> inverse_permutation_of_list xs y = x" |
|
1605 by (intro inverse_permutation_of_list_unique') (simp_all add: list_permutes_def) |
|
1606 |
|
1607 lemma inverse_permutation_of_list_correct: |
|
1608 fixes A :: "'a set" |
|
1609 assumes "list_permutes xs A" |
|
1610 shows "inverse_permutation_of_list xs = inv (permutation_of_list xs)" |
|
1611 proof (rule ext, rule sym, subst permutes_inv_eq) |
|
1612 from assms show "permutation_of_list xs permutes A" |
|
1613 by simp |
|
1614 show "permutation_of_list xs (inverse_permutation_of_list xs x) = x" for x |
|
1615 proof (cases "x \<in> set (map snd xs)") |
|
1616 case True |
|
1617 then obtain y where "(y, x) \<in> set xs" by auto |
|
1618 with assms show ?thesis |
|
1619 by (simp add: inverse_permutation_of_list_unique permutation_of_list_unique) |
|
1620 next |
|
1621 case False |
|
1622 with assms show ?thesis |
|
1623 by (auto simp: list_permutes_def inverse_permutation_of_list_id permutation_of_list_id) |
|
1624 qed |
|
1625 qed |
|
1626 |
|
1627 end |
|