src/HOL/Library/Stream.thy
changeset 58607 1f90ea1b4010
parent 58309 a09ec6daaa19
child 58710 7216a10d69ba
equal deleted inserted replaced
58606:9c66f7c541fb 58607:1f90ea1b4010
       
     1 (*  Title:      HOL/Library/Stream.thy
       
     2     Author:     Dmitriy Traytel, TU Muenchen
       
     3     Author:     Andrei Popescu, TU Muenchen
       
     4     Copyright   2012, 2013
       
     5 
       
     6 Infinite streams.
       
     7 *)
       
     8 
       
     9 header {* Infinite Streams *}
       
    10 
       
    11 theory Stream
       
    12 imports "~~/src/HOL/Library/Nat_Bijection"
       
    13 begin
       
    14 
       
    15 codatatype (sset: 'a) stream =
       
    16   SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
       
    17 for
       
    18   map: smap
       
    19   rel: stream_all2
       
    20 
       
    21 (*for code generation only*)
       
    22 definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
       
    23   [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
       
    24 
       
    25 lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
       
    26   unfolding smember_def by auto
       
    27 
       
    28 hide_const (open) smember
       
    29 
       
    30 lemmas smap_simps[simp] = stream.map_sel
       
    31 lemmas shd_sset = stream.set_sel(1)
       
    32 lemmas stl_sset = stream.set_sel(2)
       
    33 
       
    34 theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
       
    35   assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
       
    36   shows "P y s"
       
    37 using assms by induct (metis stream.sel(1), auto)
       
    38 
       
    39 
       
    40 subsection {* prepend list to stream *}
       
    41 
       
    42 primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
       
    43   "shift [] s = s"
       
    44 | "shift (x # xs) s = x ## shift xs s"
       
    45 
       
    46 lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
       
    47   by (induct xs) auto
       
    48 
       
    49 lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
       
    50   by (induct xs) auto
       
    51 
       
    52 lemma shift_simps[simp]:
       
    53    "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
       
    54    "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
       
    55   by (induct xs) auto
       
    56 
       
    57 lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
       
    58   by (induct xs) auto
       
    59 
       
    60 lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
       
    61   by (induct xs) auto
       
    62 
       
    63 
       
    64 subsection {* set of streams with elements in some fixed set *}
       
    65 
       
    66 coinductive_set
       
    67   streams :: "'a set \<Rightarrow> 'a stream set"
       
    68   for A :: "'a set"
       
    69 where
       
    70   Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
       
    71 
       
    72 lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
       
    73   by (induct w) auto
       
    74 
       
    75 lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
       
    76   by (auto elim: streams.cases)
       
    77 
       
    78 lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
       
    79   by (cases s) (auto simp: streams_Stream)
       
    80 
       
    81 lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
       
    82   by (cases s) (auto simp: streams_Stream)
       
    83 
       
    84 lemma sset_streams:
       
    85   assumes "sset s \<subseteq> A"
       
    86   shows "s \<in> streams A"
       
    87 using assms proof (coinduction arbitrary: s)
       
    88   case streams then show ?case by (cases s) simp
       
    89 qed
       
    90 
       
    91 lemma streams_sset:
       
    92   assumes "s \<in> streams A"
       
    93   shows "sset s \<subseteq> A"
       
    94 proof
       
    95   fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
       
    96     by (induct s) (auto intro: streams_shd streams_stl)
       
    97 qed
       
    98 
       
    99 lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
       
   100   by (metis sset_streams streams_sset)
       
   101 
       
   102 lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
       
   103   unfolding streams_iff_sset by auto
       
   104 
       
   105 lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
       
   106   unfolding streams_iff_sset stream.set_map by auto
       
   107 
       
   108 lemma streams_empty: "streams {} = {}"
       
   109   by (auto elim: streams.cases)
       
   110 
       
   111 lemma streams_UNIV[simp]: "streams UNIV = UNIV"
       
   112   by (auto simp: streams_iff_sset)
       
   113 
       
   114 subsection {* nth, take, drop for streams *}
       
   115 
       
   116 primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
       
   117   "s !! 0 = shd s"
       
   118 | "s !! Suc n = stl s !! n"
       
   119 
       
   120 lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
       
   121   by (induct n arbitrary: s) auto
       
   122 
       
   123 lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
       
   124   by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
       
   125 
       
   126 lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
       
   127   by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
       
   128 
       
   129 lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
       
   130   by auto
       
   131 
       
   132 lemma snth_sset[simp]: "s !! n \<in> sset s"
       
   133   by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
       
   134 
       
   135 lemma sset_range: "sset s = range (snth s)"
       
   136 proof (intro equalityI subsetI)
       
   137   fix x assume "x \<in> sset s"
       
   138   thus "x \<in> range (snth s)"
       
   139   proof (induct s)
       
   140     case (stl s x)
       
   141     then obtain n where "x = stl s !! n" by auto
       
   142     thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
       
   143   qed (auto intro: range_eqI[of _ _ 0])
       
   144 qed auto
       
   145 
       
   146 primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
       
   147   "stake 0 s = []"
       
   148 | "stake (Suc n) s = shd s # stake n (stl s)"
       
   149 
       
   150 lemma length_stake[simp]: "length (stake n s) = n"
       
   151   by (induct n arbitrary: s) auto
       
   152 
       
   153 lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
       
   154   by (induct n arbitrary: s) auto
       
   155 
       
   156 lemma take_stake: "take n (stake m s) = stake (min n m) s"
       
   157 proof (induct m arbitrary: s n)
       
   158   case (Suc m) thus ?case by (cases n) auto
       
   159 qed simp
       
   160 
       
   161 primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
       
   162   "sdrop 0 s = s"
       
   163 | "sdrop (Suc n) s = sdrop n (stl s)"
       
   164 
       
   165 lemma sdrop_simps[simp]:
       
   166   "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
       
   167   by (induct n arbitrary: s)  auto
       
   168 
       
   169 lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
       
   170   by (induct n arbitrary: s) auto
       
   171 
       
   172 lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
       
   173   by (induct n) auto
       
   174 
       
   175 lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
       
   176 proof (induct m arbitrary: s n)
       
   177   case (Suc m) thus ?case by (cases n) auto
       
   178 qed simp
       
   179 
       
   180 lemma stake_sdrop: "stake n s @- sdrop n s = s"
       
   181   by (induct n arbitrary: s) auto
       
   182 
       
   183 lemma id_stake_snth_sdrop:
       
   184   "s = stake i s @- s !! i ## sdrop (Suc i) s"
       
   185   by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
       
   186 
       
   187 lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
       
   188 proof
       
   189   assume ?R
       
   190   then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
       
   191     by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
       
   192   then show ?L using sdrop.simps(1) by metis
       
   193 qed auto
       
   194 
       
   195 lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
       
   196   by (induct n) auto
       
   197 
       
   198 lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
       
   199   by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
       
   200 
       
   201 lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
       
   202   by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
       
   203 
       
   204 lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
       
   205   by (induct m arbitrary: s) auto
       
   206 
       
   207 lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
       
   208   by (induct m arbitrary: s) auto
       
   209 
       
   210 lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
       
   211   by (induct n arbitrary: m s) auto
       
   212 
       
   213 partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
       
   214   "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
       
   215 
       
   216 lemma sdrop_while_SCons[code]:
       
   217   "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
       
   218   by (subst sdrop_while.simps) simp
       
   219 
       
   220 lemma sdrop_while_sdrop_LEAST:
       
   221   assumes "\<exists>n. P (s !! n)"
       
   222   shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
       
   223 proof -
       
   224   from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
       
   225     and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
       
   226   thus ?thesis unfolding *
       
   227   proof (induct m arbitrary: s)
       
   228     case (Suc m)
       
   229     hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
       
   230       by (metis (full_types) not_less_eq_eq snth.simps(2))
       
   231     moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
       
   232     ultimately show ?case by (subst sdrop_while.simps) simp
       
   233   qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
       
   234 qed
       
   235 
       
   236 primcorec sfilter where
       
   237   "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
       
   238 | "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
       
   239 
       
   240 lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
       
   241 proof (cases "P x")
       
   242   case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
       
   243 next
       
   244   case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
       
   245 qed
       
   246 
       
   247 
       
   248 subsection {* unary predicates lifted to streams *}
       
   249 
       
   250 definition "stream_all P s = (\<forall>p. P (s !! p))"
       
   251 
       
   252 lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
       
   253   unfolding stream_all_def sset_range by auto
       
   254 
       
   255 lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
       
   256   unfolding stream_all_iff list_all_iff by auto
       
   257 
       
   258 lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
       
   259   by simp
       
   260 
       
   261 
       
   262 subsection {* recurring stream out of a list *}
       
   263 
       
   264 primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
       
   265   "shd (cycle xs) = hd xs"
       
   266 | "stl (cycle xs) = cycle (tl xs @ [hd xs])"
       
   267 
       
   268 lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
       
   269 proof (coinduction arbitrary: u)
       
   270   case Eq_stream then show ?case using stream.collapse[of "cycle u"]
       
   271     by (auto intro!: exI[of _ "tl u @ [hd u]"])
       
   272 qed
       
   273 
       
   274 lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
       
   275   by (subst cycle.ctr) simp
       
   276 
       
   277 lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
       
   278   by (auto dest: arg_cong[of _ _ stl])
       
   279 
       
   280 lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
       
   281 proof (induct n arbitrary: u)
       
   282   case (Suc n) thus ?case by (cases u) auto
       
   283 qed auto
       
   284 
       
   285 lemma stake_cycle_le[simp]:
       
   286   assumes "u \<noteq> []" "n < length u"
       
   287   shows "stake n (cycle u) = take n u"
       
   288 using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
       
   289   by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
       
   290 
       
   291 lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
       
   292   by (subst cycle_decomp) (auto simp: stake_shift)
       
   293 
       
   294 lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
       
   295   by (subst cycle_decomp) (auto simp: sdrop_shift)
       
   296 
       
   297 lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
       
   298    stake n (cycle u) = concat (replicate (n div length u) u)"
       
   299   by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
       
   300 
       
   301 lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
       
   302    sdrop n (cycle u) = cycle u"
       
   303   by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
       
   304 
       
   305 lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
       
   306    stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
       
   307   by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
       
   308 
       
   309 lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
       
   310   by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
       
   311 
       
   312 
       
   313 subsection {* iterated application of a function *}
       
   314 
       
   315 primcorec siterate where
       
   316   "shd (siterate f x) = x"
       
   317 | "stl (siterate f x) = siterate f (f x)"
       
   318 
       
   319 lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
       
   320   by (induct n arbitrary: s) auto
       
   321 
       
   322 lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
       
   323   by (induct n arbitrary: x) (auto simp: funpow_swap1)
       
   324 
       
   325 lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
       
   326   by (induct n arbitrary: x) (auto simp: funpow_swap1)
       
   327 
       
   328 lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
       
   329   by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
       
   330 
       
   331 lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
       
   332   by (auto simp: sset_range)
       
   333 
       
   334 lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
       
   335   by (coinduction arbitrary: x) auto
       
   336 
       
   337 
       
   338 subsection {* stream repeating a single element *}
       
   339 
       
   340 abbreviation "sconst \<equiv> siterate id"
       
   341 
       
   342 lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
       
   343   by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
       
   344 
       
   345 lemma sset_sconst[simp]: "sset (sconst x) = {x}"
       
   346   by (simp add: sset_siterate)
       
   347 
       
   348 lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
       
   349 proof
       
   350   assume "sset s = {x}"
       
   351   then show "s = sconst x"
       
   352   proof (coinduction arbitrary: s)
       
   353     case Eq_stream
       
   354     then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
       
   355     then have "sset (stl s) = {x}" by (cases "stl s") auto
       
   356     with `shd s = x` show ?case by auto
       
   357   qed
       
   358 qed simp
       
   359 
       
   360 lemma same_cycle: "sconst x = cycle [x]"
       
   361   by coinduction auto
       
   362 
       
   363 lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
       
   364   by coinduction auto
       
   365 
       
   366 lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
       
   367   by (simp add: streams_iff_sset)
       
   368 
       
   369 
       
   370 subsection {* stream of natural numbers *}
       
   371 
       
   372 abbreviation "fromN \<equiv> siterate Suc"
       
   373 
       
   374 abbreviation "nats \<equiv> fromN 0"
       
   375 
       
   376 lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
       
   377   by (auto simp add: sset_siterate le_iff_add)
       
   378 
       
   379 lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
       
   380   by (coinduction arbitrary: s n)
       
   381     (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
       
   382       intro: stream.map_cong split: if_splits simp del: snth.simps(2))
       
   383 
       
   384 lemma stream_smap_nats: "s = smap (snth s) nats"
       
   385   using stream_smap_fromN[where n = 0] by simp
       
   386 
       
   387 
       
   388 subsection {* flatten a stream of lists *}
       
   389 
       
   390 primcorec flat where
       
   391   "shd (flat ws) = hd (shd ws)"
       
   392 | "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
       
   393 
       
   394 lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
       
   395   by (subst flat.ctr) simp
       
   396 
       
   397 lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
       
   398   by (induct xs) auto
       
   399 
       
   400 lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
       
   401   by (cases ws) auto
       
   402 
       
   403 lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
       
   404   shd s ! n else flat (stl s) !! (n - length (shd s)))"
       
   405   by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
       
   406 
       
   407 lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
       
   408   sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
       
   409 proof safe
       
   410   fix x assume ?P "x : ?L"
       
   411   then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
       
   412   with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
       
   413   proof (atomize_elim, induct m arbitrary: s rule: less_induct)
       
   414     case (less y)
       
   415     thus ?case
       
   416     proof (cases "y < length (shd s)")
       
   417       case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
       
   418     next
       
   419       case False
       
   420       hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
       
   421       moreover
       
   422       { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
       
   423         with False have "y > 0" by (cases y) simp_all
       
   424         with * have "y - length (shd s) < y" by simp
       
   425       }
       
   426       moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
       
   427       ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
       
   428       thus ?thesis by (metis snth.simps(2))
       
   429     qed
       
   430   qed
       
   431   thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
       
   432 next
       
   433   fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
       
   434     by (induct rule: sset_induct)
       
   435       (metis UnI1 flat_unfold shift.simps(1) sset_shift,
       
   436        metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
       
   437 qed
       
   438 
       
   439 
       
   440 subsection {* merge a stream of streams *}
       
   441 
       
   442 definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
       
   443   "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
       
   444 
       
   445 lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
       
   446   by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
       
   447 
       
   448 lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
       
   449 proof (cases "n \<le> m")
       
   450   case False thus ?thesis unfolding smerge_def
       
   451     by (subst sset_flat)
       
   452       (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
       
   453         intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
       
   454 next
       
   455   case True thus ?thesis unfolding smerge_def
       
   456     by (subst sset_flat)
       
   457       (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
       
   458         intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
       
   459 qed
       
   460 
       
   461 lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
       
   462 proof safe
       
   463   fix x assume "x \<in> sset (smerge ss)"
       
   464   thus "x \<in> UNION (sset ss) sset"
       
   465     unfolding smerge_def by (subst (asm) sset_flat)
       
   466       (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
       
   467 next
       
   468   fix s x assume "s \<in> sset ss" "x \<in> sset s"
       
   469   thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
       
   470 qed
       
   471 
       
   472 
       
   473 subsection {* product of two streams *}
       
   474 
       
   475 definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
       
   476   "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
       
   477 
       
   478 lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
       
   479   unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
       
   480 
       
   481 
       
   482 subsection {* interleave two streams *}
       
   483 
       
   484 primcorec sinterleave where
       
   485   "shd (sinterleave s1 s2) = shd s1"
       
   486 | "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
       
   487 
       
   488 lemma sinterleave_code[code]:
       
   489   "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
       
   490   by (subst sinterleave.ctr) simp
       
   491 
       
   492 lemma sinterleave_snth[simp]:
       
   493   "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
       
   494    "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
       
   495   by (induct n arbitrary: s1 s2)
       
   496     (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
       
   497 
       
   498 lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
       
   499 proof (intro equalityI subsetI)
       
   500   fix x assume "x \<in> sset (sinterleave s1 s2)"
       
   501   then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
       
   502   thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
       
   503 next
       
   504   fix x assume "x \<in> sset s1 \<union> sset s2"
       
   505   thus "x \<in> sset (sinterleave s1 s2)"
       
   506   proof
       
   507     assume "x \<in> sset s1"
       
   508     then obtain n where "x = s1 !! n" unfolding sset_range by blast
       
   509     hence "sinterleave s1 s2 !! (2 * n) = x" by simp
       
   510     thus ?thesis unfolding sset_range by blast
       
   511   next
       
   512     assume "x \<in> sset s2"
       
   513     then obtain n where "x = s2 !! n" unfolding sset_range by blast
       
   514     hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
       
   515     thus ?thesis unfolding sset_range by blast
       
   516   qed
       
   517 qed
       
   518 
       
   519 
       
   520 subsection {* zip *}
       
   521 
       
   522 primcorec szip where
       
   523   "shd (szip s1 s2) = (shd s1, shd s2)"
       
   524 | "stl (szip s1 s2) = szip (stl s1) (stl s2)"
       
   525 
       
   526 lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
       
   527   by (subst szip.ctr) simp
       
   528 
       
   529 lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
       
   530   by (induct n arbitrary: s1 s2) auto
       
   531 
       
   532 lemma stake_szip[simp]:
       
   533   "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
       
   534   by (induct n arbitrary: s1 s2) auto
       
   535 
       
   536 lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
       
   537   by (induct n arbitrary: s1 s2) auto
       
   538 
       
   539 lemma smap_szip_fst:
       
   540   "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
       
   541   by (coinduction arbitrary: s1 s2) auto
       
   542 
       
   543 lemma smap_szip_snd:
       
   544   "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
       
   545   by (coinduction arbitrary: s1 s2) auto
       
   546 
       
   547 
       
   548 subsection {* zip via function *}
       
   549 
       
   550 primcorec smap2 where
       
   551   "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
       
   552 | "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
       
   553 
       
   554 lemma smap2_unfold[code]:
       
   555   "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
       
   556   by (subst smap2.ctr) simp
       
   557 
       
   558 lemma smap2_szip:
       
   559   "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
       
   560   by (coinduction arbitrary: s1 s2) auto
       
   561 
       
   562 lemma smap_smap2[simp]:
       
   563   "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
       
   564   unfolding smap2_szip stream.map_comp o_def split_def ..
       
   565 
       
   566 lemma smap2_alt:
       
   567   "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
       
   568   unfolding smap2_szip smap_alt by auto
       
   569 
       
   570 lemma snth_smap2[simp]:
       
   571   "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
       
   572   by (induct n arbitrary: s1 s2) auto
       
   573 
       
   574 lemma stake_smap2[simp]:
       
   575   "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))"
       
   576   by (induct n arbitrary: s1 s2) auto
       
   577 
       
   578 lemma sdrop_smap2[simp]:
       
   579   "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
       
   580   by (induct n arbitrary: s1 s2) auto
       
   581 
       
   582 end