85 lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) (=)) = (\<lambda>x y. (x, y) \<in> r \<union> Id)" |
85 lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) (=)) = (\<lambda>x y. (x, y) \<in> r \<union> Id)" |
86 by (auto simp: fun_eq_iff) |
86 by (auto simp: fun_eq_iff) |
87 |
87 |
88 lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*" |
88 lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*" |
89 \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
89 \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
90 apply (simp only: split_tupled_all) |
90 by (simp add: split_tupled_all rtrancl_refl [THEN rtrancl_into_rtrancl]) |
91 apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) |
|
92 done |
|
93 |
91 |
94 lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" |
92 lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" |
95 \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
93 \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
96 by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) |
94 by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) |
97 |
95 |
98 lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*" |
96 lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*" |
99 \<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close> |
97 \<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close> |
100 apply (rule predicate2I) |
98 proof (rule predicate2I) |
101 apply (erule rtranclp.induct) |
99 show "s\<^sup>*\<^sup>* x y" if "r \<le> s" "r\<^sup>*\<^sup>* x y" for x y |
102 apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+) |
100 using \<open>r\<^sup>*\<^sup>* x y\<close> \<open>r \<le> s\<close> |
103 done |
101 by (induction rule: rtranclp.induct) (blast intro: rtranclp.rtrancl_into_rtrancl)+ |
|
102 qed |
104 |
103 |
105 lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b" |
104 lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b" |
106 using rtranclp_mono[of x y] by auto |
105 using rtranclp_mono[of x y] by auto |
107 |
106 |
108 lemmas rtrancl_mono = rtranclp_mono [to_set] |
107 lemmas rtrancl_mono = rtranclp_mono [to_set] |
162 then show ?thesis |
161 then show ?thesis |
163 by (auto intro: base step) |
162 by (auto intro: base step) |
164 qed |
163 qed |
165 |
164 |
166 lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s" |
165 lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s" |
167 apply clarify |
166 by (fastforce elim: rtrancl_induct) |
168 apply (erule rtrancl_induct, auto) |
|
169 done |
|
170 |
167 |
171 lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" |
168 lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" |
172 by (rule rtranclp_trans) iprover+ |
169 by (rule rtranclp_trans) iprover+ |
173 |
170 |
174 lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] |
171 lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] |
175 |
172 |
176 text \<open>\<^medskip> More \<^term>\<open>r\<^sup>*\<close> equations and inclusions.\<close> |
173 text \<open>\<^medskip> More \<^term>\<open>r\<^sup>*\<close> equations and inclusions.\<close> |
177 |
174 |
178 lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" |
175 lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" |
179 apply (auto intro!: order_antisym) |
176 proof - |
180 apply (erule rtranclp_induct) |
177 have "r\<^sup>*\<^sup>*\<^sup>*\<^sup>* x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" for x y |
181 apply (rule rtranclp.rtrancl_refl) |
178 by (induction rule: rtranclp_induct) (blast intro: rtranclp_trans)+ |
182 apply (blast intro: rtranclp_trans) |
179 then show ?thesis |
183 done |
180 by (auto intro!: order_antisym) |
|
181 qed |
184 |
182 |
185 lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] |
183 lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] |
186 |
184 |
187 lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*" |
185 lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*" |
188 apply (rule set_eqI) |
186 by (force intro: rtrancl_trans) |
189 apply (simp only: split_tupled_all) |
|
190 apply (blast intro: rtrancl_trans) |
|
191 done |
|
192 |
187 |
193 lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*" |
188 lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*" |
194 by (drule rtrancl_mono, simp) |
189 by (drule rtrancl_mono, simp) |
195 |
190 |
196 lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" |
191 lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" |
197 apply (drule rtranclp_mono) |
192 by (fastforce dest: rtranclp_mono) |
198 apply (drule rtranclp_mono, simp) |
|
199 done |
|
200 |
193 |
201 lemmas rtrancl_subset = rtranclp_subset [to_set] |
194 lemmas rtrancl_subset = rtranclp_subset [to_set] |
202 |
195 |
203 lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*" |
196 lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*" |
204 by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) |
197 by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) |
317 qed |
310 qed |
318 |
311 |
319 |
312 |
320 subsection \<open>Transitive closure\<close> |
313 subsection \<open>Transitive closure\<close> |
321 |
314 |
322 lemma trancl_mono: "\<And>p. p \<in> r\<^sup>+ \<Longrightarrow> r \<subseteq> s \<Longrightarrow> p \<in> s\<^sup>+" |
315 lemma trancl_mono: |
323 apply (simp add: split_tupled_all) |
316 assumes "p \<in> r\<^sup>+" "r \<subseteq> s" |
324 apply (erule trancl.induct) |
317 shows "p \<in> s\<^sup>+" |
325 apply (iprover dest: subsetD)+ |
318 proof - |
326 done |
319 have "\<lbrakk>(a, b) \<in> r\<^sup>+; r \<subseteq> s\<rbrakk> \<Longrightarrow> (a, b) \<in> s\<^sup>+" for a b |
|
320 by (induction rule: trancl.induct) (iprover dest: subsetD)+ |
|
321 with assms show ?thesis |
|
322 by (cases p) force |
|
323 qed |
327 |
324 |
328 lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+" |
325 lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+" |
329 by (simp only: split_tupled_all) (erule r_into_trancl) |
326 by (simp only: split_tupled_all) (erule r_into_trancl) |
330 |
327 |
331 text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close> |
328 text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close> |
340 shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
337 shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
341 using assms by (induct arbitrary: c) iprover+ |
338 using assms by (induct arbitrary: c) iprover+ |
342 |
339 |
343 lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] |
340 lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] |
344 |
341 |
345 lemma rtranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
342 lemma rtranclp_into_tranclp2: |
|
343 assumes "r a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" |
346 \<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close> |
344 \<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close> |
347 apply (erule rtranclp.cases, iprover) |
345 using \<open>r\<^sup>*\<^sup>* b c\<close> |
348 apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) |
346 proof (cases rule: rtranclp.cases) |
349 apply (simp | rule r_into_rtranclp)+ |
347 case rtrancl_refl |
350 done |
348 with assms show ?thesis |
|
349 by iprover |
|
350 next |
|
351 case rtrancl_into_rtrancl |
|
352 with assms show ?thesis |
|
353 by (auto intro: rtranclp_trans [THEN rtranclp_into_tranclp1]) |
|
354 qed |
351 |
355 |
352 lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] |
356 lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] |
353 |
357 |
354 text \<open>Nice induction rule for \<open>trancl\<close>\<close> |
358 text \<open>Nice induction rule for \<open>trancl\<close>\<close> |
355 lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: |
359 lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: |
382 (base) "(a, b) \<in> r" |
386 (base) "(a, b) \<in> r" |
383 | (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r" |
387 | (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r" |
384 using assms by cases simp_all |
388 using assms by cases simp_all |
385 |
389 |
386 lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s" |
390 lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s" |
387 apply clarify |
391 by (fastforce simp add: elim: trancl_induct) |
388 apply (erule trancl_induct, auto) |
|
389 done |
|
390 |
392 |
391 lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r" |
393 lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r" |
392 by (auto intro: trancl_into_trancl elim: tranclE) |
394 by (auto intro: trancl_into_trancl elim: tranclE) |
393 |
395 |
394 text \<open>Transitivity of \<^term>\<open>r\<^sup>+\<close>\<close> |
396 text \<open>Transitivity of \<^term>\<open>r\<^sup>+\<close>\<close> |
416 and "r\<^sup>+\<^sup>+ y z" |
418 and "r\<^sup>+\<^sup>+ y z" |
417 shows "r\<^sup>+\<^sup>+ x z" |
419 shows "r\<^sup>+\<^sup>+ x z" |
418 using assms(2,1) by induct iprover+ |
420 using assms(2,1) by induct iprover+ |
419 |
421 |
420 lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r" |
422 lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r" |
421 apply auto |
423 unfolding trans_def by (fastforce simp add: elim: trancl_induct) |
422 apply (erule trancl_induct, assumption) |
|
423 apply (unfold trans_def, blast) |
|
424 done |
|
425 |
424 |
426 lemma rtranclp_tranclp_tranclp: |
425 lemma rtranclp_tranclp_tranclp: |
427 assumes "r\<^sup>*\<^sup>* x y" |
426 assumes "r\<^sup>*\<^sup>* x y" |
428 shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z" |
427 shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z" |
429 using assms by induct (iprover intro: tranclp_trans)+ |
428 using assms by induct (iprover intro: tranclp_trans)+ |
433 lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
432 lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
434 by (erule tranclp_trans [OF tranclp.r_into_trancl]) |
433 by (erule tranclp_trans [OF tranclp.r_into_trancl]) |
435 |
434 |
436 lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] |
435 lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] |
437 |
436 |
438 lemma tranclp_converseI: "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y \<Longrightarrow> (r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" |
437 lemma tranclp_converseI: |
439 apply (drule conversepD) |
438 assumes "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" shows "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" |
440 apply (erule tranclp_induct) |
439 using conversepD [OF assms] |
441 apply (iprover intro: conversepI tranclp_trans)+ |
440 proof (induction rule: tranclp_induct) |
442 done |
441 case (base y) |
|
442 then show ?case |
|
443 by (iprover intro: conversepI) |
|
444 next |
|
445 case (step y z) |
|
446 then show ?case |
|
447 by (iprover intro: conversepI tranclp_trans) |
|
448 qed |
443 |
449 |
444 lemmas trancl_converseI = tranclp_converseI [to_set] |
450 lemmas trancl_converseI = tranclp_converseI [to_set] |
445 |
451 |
446 lemma tranclp_converseD: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y \<Longrightarrow> (r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" |
452 lemma tranclp_converseD: |
447 apply (rule conversepI) |
453 assumes "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" shows "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" |
448 apply (erule tranclp_induct) |
454 proof - |
449 apply (iprover dest: conversepD intro: tranclp_trans)+ |
455 have "r\<^sup>+\<^sup>+ y x" |
450 done |
456 using assms |
|
457 by (induction rule: tranclp_induct) (iprover dest: conversepD intro: tranclp_trans)+ |
|
458 then show ?thesis |
|
459 by (rule conversepI) |
|
460 qed |
451 |
461 |
452 lemmas trancl_converseD = tranclp_converseD [to_set] |
462 lemmas trancl_converseD = tranclp_converseD [to_set] |
453 |
463 |
454 lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>" |
464 lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>" |
455 by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) |
465 by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) |
461 |
471 |
462 lemma converse_tranclp_induct [consumes 1, case_names base step]: |
472 lemma converse_tranclp_induct [consumes 1, case_names base step]: |
463 assumes major: "r\<^sup>+\<^sup>+ a b" |
473 assumes major: "r\<^sup>+\<^sup>+ a b" |
464 and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y" |
474 and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y" |
465 shows "P a" |
475 shows "P a" |
466 apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) |
476 proof - |
467 apply (blast intro: cases) |
477 have "r\<inverse>\<inverse>\<^sup>+\<^sup>+ b a" |
468 apply (blast intro: assms dest!: tranclp_converseD) |
478 by (intro tranclp_converseI conversepI major) |
469 done |
479 then show ?thesis |
|
480 by (induction rule: tranclp_induct) (blast intro: cases dest: tranclp_converseD)+ |
|
481 qed |
470 |
482 |
471 lemmas converse_trancl_induct = converse_tranclp_induct [to_set] |
483 lemmas converse_trancl_induct = converse_tranclp_induct [to_set] |
472 |
484 |
473 lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y" |
485 lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y" |
474 apply (erule converse_tranclp_induct, auto) |
486 proof (induction rule: converse_tranclp_induct) |
475 apply (blast intro: rtranclp_trans) |
487 case (step u v) |
476 done |
488 then show ?case |
|
489 by (blast intro: rtranclp_trans) |
|
490 qed auto |
477 |
491 |
478 lemmas tranclD = tranclpD [to_set] |
492 lemmas tranclD = tranclpD [to_set] |
479 |
493 |
480 lemma converse_tranclpE: |
494 lemma converse_tranclpE: |
481 assumes major: "tranclp r x z" |
495 assumes major: "tranclp r x z" |
511 by (blast dest: r_into_trancl) |
525 by (blast dest: r_into_trancl) |
512 |
526 |
513 lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A" |
527 lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A" |
514 by (induct rule: rtrancl_induct) auto |
528 by (induct rule: rtrancl_induct) auto |
515 |
529 |
516 lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A \<Longrightarrow> r\<^sup>+ \<subseteq> A \<times> A" |
530 lemma trancl_subset_Sigma: |
517 apply (clarsimp simp:) |
531 assumes "r \<subseteq> A \<times> A" shows "r\<^sup>+ \<subseteq> A \<times> A" |
518 apply (erule tranclE) |
532 proof (rule trancl_Int_subset [OF assms]) |
519 apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ |
533 show "(r\<^sup>+ \<inter> A \<times> A) O r \<subseteq> A \<times> A" |
520 done |
534 using assms by auto |
|
535 qed |
521 |
536 |
522 lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*" |
537 lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*" |
523 apply (safe intro!: order_antisym) |
538 by (fast elim: rtranclp.cases tranclp_into_rtranclp dest: rtranclp_into_tranclp1) |
524 apply (erule tranclp_into_rtranclp) |
|
525 apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) |
|
526 done |
|
527 |
539 |
528 lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] |
540 lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] |
529 |
541 |
530 lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" |
542 lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" |
531 proof - |
543 proof - |
627 then show ?thesis |
639 then show ?thesis |
628 by auto |
640 by auto |
629 qed |
641 qed |
630 |
642 |
631 lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r" |
643 lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r" |
632 apply clarify |
644 by (rule trancl_Int_subset) (auto simp: Field_def) |
633 apply (erule trancl_induct) |
|
634 apply (auto simp: Field_def) |
|
635 done |
|
636 |
645 |
637 lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" |
646 lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" |
638 proof |
647 proof |
639 show "finite (r\<^sup>+) \<Longrightarrow> finite r" |
648 show "finite (r\<^sup>+) \<Longrightarrow> finite r" |
640 by (blast intro: r_into_trancl' finite_subset) |
649 by (blast intro: r_into_trancl' finite_subset) |
641 show "finite r \<Longrightarrow> finite (r\<^sup>+)" |
650 show "finite r \<Longrightarrow> finite (r\<^sup>+)" |
642 apply (rule trancl_subset_Field2 [THEN finite_subset]) |
651 by (auto simp: finite_Field trancl_subset_Field2 [THEN finite_subset]) |
643 apply (auto simp: finite_Field) |
|
644 done |
|
645 qed |
652 qed |
646 |
653 |
647 lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)" |
654 lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)" |
648 proof (rule ccontr) |
655 proof (rule ccontr) |
649 assume "infinite (R\<^sup>* `` A)" |
656 assume "infinite (R\<^sup>* `` A)" |
663 show ?case |
670 show ?case |
664 by (simp add: assms) |
671 by (simp add: assms) |
665 next |
672 next |
666 case (step y z) |
673 case (step y z) |
667 with xz \<open>single_valued r\<close> show ?case |
674 with xz \<open>single_valued r\<close> show ?case |
668 apply (auto simp: elim: converse_rtranclE dest: single_valuedD) |
675 by (auto elim: converse_rtranclE dest: single_valuedD intro: rtrancl_trans) |
669 apply (blast intro: rtrancl_trans) |
|
670 done |
|
671 qed |
676 qed |
672 |
677 |
673 lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+" |
678 lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+" |
674 by (fast intro: trancl_trans) |
679 by (fast intro: trancl_trans) |
675 |
680 |
676 lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" |
681 lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" |
677 by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+ |
682 by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+ |
678 |
683 |
679 lemma tranclp_rtranclp_tranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
684 lemma tranclp_rtranclp_tranclp: |
680 apply (drule tranclpD) |
685 assumes "r\<^sup>+\<^sup>+ a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" |
681 apply (elim exE conjE) |
686 proof - |
682 apply (drule rtranclp_trans, assumption) |
687 obtain z where "r a z" "r\<^sup>*\<^sup>* z c" |
683 apply (drule (2) rtranclp_into_tranclp2) |
688 using assms by (iprover dest: tranclpD rtranclp_trans) |
684 done |
689 then show ?thesis |
|
690 by (blast dest: rtranclp_into_tranclp2) |
|
691 qed |
685 |
692 |
686 lemma rtranclp_conversep: "r\<inverse>\<inverse>\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*\<inverse>\<inverse>" |
693 lemma rtranclp_conversep: "r\<inverse>\<inverse>\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*\<inverse>\<inverse>" |
687 by(auto simp add: fun_eq_iff intro: rtranclp_converseI rtranclp_converseD) |
694 by(auto simp add: fun_eq_iff intro: rtranclp_converseI rtranclp_converseD) |
688 |
695 |
689 lemmas symp_rtranclp = sym_rtrancl[to_pred] |
696 lemmas symp_rtranclp = sym_rtrancl[to_pred] |
715 definition symclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
722 definition symclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
716 where "symclp r x y \<longleftrightarrow> r x y \<or> r y x" |
723 where "symclp r x y \<longleftrightarrow> r x y \<or> r y x" |
717 |
724 |
718 lemma symclpI [simp, intro?]: |
725 lemma symclpI [simp, intro?]: |
719 shows symclpI1: "r x y \<Longrightarrow> symclp r x y" |
726 shows symclpI1: "r x y \<Longrightarrow> symclp r x y" |
720 and symclpI2: "r y x \<Longrightarrow> symclp r x y" |
727 and symclpI2: "r y x \<Longrightarrow> symclp r x y" |
721 by(simp_all add: symclp_def) |
728 by(simp_all add: symclp_def) |
722 |
729 |
723 lemma symclpE [consumes 1, cases pred]: |
730 lemma symclpE [consumes 1, cases pred]: |
724 assumes "symclp r x y" |
731 assumes "symclp r x y" |
725 obtains (base) "r x y" | (sym) "r y x" |
732 obtains (base) "r x y" | (sym) "r y x" |
726 using assms by(auto simp add: symclp_def) |
733 using assms by(auto simp add: symclp_def) |
727 |
734 |
728 lemma symclp_pointfree: "symclp r = sup r r\<inverse>\<inverse>" |
735 lemma symclp_pointfree: "symclp r = sup r r\<inverse>\<inverse>" |
729 by(auto simp add: symclp_def fun_eq_iff) |
736 by(auto simp add: symclp_def fun_eq_iff) |
730 |
737 |
731 lemma symclp_greater: "r \<le> symclp r" |
738 lemma symclp_greater: "r \<le> symclp r" |
960 lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)" |
967 lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)" |
961 by (simp add: rtranclp_is_Sup_relpowp) |
968 by (simp add: rtranclp_is_Sup_relpowp) |
962 |
969 |
963 lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" |
970 lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" |
964 proof - |
971 proof - |
965 have "((a, b) \<in> R\<^sup>+) = (\<exists>n>0. (a, b) \<in> R ^^ n)" for a b |
972 have "(a, b) \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n>0. (a, b) \<in> R ^^ n)" for a b |
966 proof safe |
973 proof safe |
967 show "(a, b) \<in> R\<^sup>+ \<Longrightarrow> \<exists>n>0. (a, b) \<in> R ^^ n" |
974 show "(a, b) \<in> R\<^sup>+ \<Longrightarrow> \<exists>n>0. (a, b) \<in> R ^^ n" |
968 apply (drule tranclD2) |
975 by (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold dest: tranclD2) |
969 apply (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold) |
|
970 done |
|
971 show "(a, b) \<in> R\<^sup>+" if "n > 0" "(a, b) \<in> R ^^ n" for n |
976 show "(a, b) \<in> R\<^sup>+" if "n > 0" "(a, b) \<in> R ^^ n" for n |
972 proof (cases n) |
977 proof (cases n) |
973 case (Suc m) |
978 case (Suc m) |
974 with that show ?thesis |
979 with that show ?thesis |
975 by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1) |
980 by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1) |
1115 |
1120 |
1116 lemma relpow_finite_bounded: |
1121 lemma relpow_finite_bounded: |
1117 fixes R :: "('a \<times> 'a) set" |
1122 fixes R :: "('a \<times> 'a) set" |
1118 assumes "finite R" |
1123 assumes "finite R" |
1119 shows "R^^k \<subseteq> (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
1124 shows "R^^k \<subseteq> (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
1120 apply (cases k, force) |
1125 proof (cases k) |
1121 apply (use relpow_finite_bounded1[OF assms, of k] in auto) |
1126 case (Suc k') |
1122 done |
1127 then show ?thesis |
|
1128 using relpow_finite_bounded1[OF assms, of k] by auto |
|
1129 qed force |
1123 |
1130 |
1124 lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
1131 lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
1125 by (fastforce simp: rtrancl_power dest: relpow_finite_bounded) |
1132 by (fastforce simp: rtrancl_power dest: relpow_finite_bounded) |
1126 |
1133 |
1127 lemma trancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)" |
1134 lemma trancl_finite_eq_relpow: |
1128 apply (auto simp: trancl_power) |
1135 assumes "finite R" shows "R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)" |
1129 apply (auto dest: relpow_finite_bounded1) |
1136 proof - |
1130 done |
1137 have "\<And>a b n. \<lbrakk>0 < n; (a, b) \<in> R ^^ n\<rbrakk> \<Longrightarrow> \<exists>x>0. x \<le> card R \<and> (a, b) \<in> R ^^ x" |
|
1138 using assms by (auto dest: relpow_finite_bounded1) |
|
1139 then show ?thesis |
|
1140 by (auto simp: trancl_power) |
|
1141 qed |
1131 |
1142 |
1132 lemma finite_relcomp[simp,intro]: |
1143 lemma finite_relcomp[simp,intro]: |
1133 assumes "finite R" and "finite S" |
1144 assumes "finite R" and "finite S" |
1134 shows "finite (R O S)" |
1145 shows "finite (R O S)" |
1135 proof- |
1146 proof- |
1187 from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i" |
1198 from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i" |
1188 unfolding ntrancl_def by auto |
1199 unfolding ntrancl_def by auto |
1189 show ?thesis |
1200 show ?thesis |
1190 proof (cases "i = 1") |
1201 proof (cases "i = 1") |
1191 case True |
1202 case True |
1192 from this \<open>(a, b) \<in> R ^^ i\<close> show ?thesis |
1203 with \<open>(a, b) \<in> R ^^ i\<close> show ?thesis |
1193 by (auto simp: ntrancl_def) |
1204 by (auto simp: ntrancl_def) |
1194 next |
1205 next |
1195 case False |
1206 case False |
1196 with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j" |
1207 with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j" |
1197 by (cases i) auto |
1208 by (cases i) auto |