equal
deleted
inserted
replaced
16 assumes p_a_relprime: "~[a = 0](mod p)" |
16 assumes p_a_relprime: "~[a = 0](mod p)" |
17 assumes a_nonzero: "0 < a" |
17 assumes a_nonzero: "0 < a" |
18 begin |
18 begin |
19 |
19 |
20 definition |
20 definition |
21 A :: "int set" |
21 A :: "int set" where |
22 "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}" |
22 "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}" |
23 |
23 |
24 B :: "int set" |
24 definition |
|
25 B :: "int set" where |
25 "B = (%x. x * a) ` A" |
26 "B = (%x. x * a) ` A" |
26 |
27 |
27 C :: "int set" |
28 definition |
|
29 C :: "int set" where |
28 "C = StandardRes p ` B" |
30 "C = StandardRes p ` B" |
29 |
31 |
30 D :: "int set" |
32 definition |
|
33 D :: "int set" where |
31 "D = C \<inter> {x. x \<le> ((p - 1) div 2)}" |
34 "D = C \<inter> {x. x \<le> ((p - 1) div 2)}" |
32 |
35 |
33 E :: "int set" |
36 definition |
|
37 E :: "int set" where |
34 "E = C \<inter> {x. ((p - 1) div 2) < x}" |
38 "E = C \<inter> {x. ((p - 1) div 2) < x}" |
35 |
39 |
36 F :: "int set" |
40 definition |
|
41 F :: "int set" where |
37 "F = (%x. (p - x)) ` E" |
42 "F = (%x. (p - x)) ` E" |
38 |
43 |
39 |
44 |
40 subsection {* Basic properties of p *} |
45 subsection {* Basic properties of p *} |
41 |
46 |