src/HOL/Tools/Presburger/cooper.ML
changeset 23310 22ddaef5fb92
child 23341 985190a9bc39
equal deleted inserted replaced
23309:678ee30499d2 23310:22ddaef5fb92
       
     1 (*  Title:      HOL/Tools/Presburger/cooper.ML
       
     2     ID:         $Id$
       
     3     Author:     Amine Chaieb, TU Muenchen
       
     4 *)
       
     5 
       
     6 signature COOPER =
       
     7  sig
       
     8   val cooper_conv : Proof.context -> Conv.conv
       
     9   exception COOPER of string * exn
       
    10 end;
       
    11 
       
    12 structure Cooper: COOPER =
       
    13 struct
       
    14 open Conv;
       
    15 open Normalizer;
       
    16 
       
    17 exception COOPER of string * exn;
       
    18 val simp_thms_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms);
       
    19 
       
    20 fun C f x y = f y x;
       
    21 
       
    22 val FWD = C (fold (C implies_elim));
       
    23 
       
    24 val true_tm = @{cterm "True"};
       
    25 val false_tm = @{cterm "False"};
       
    26 val zdvd1_eq = @{thm "zdvd1_eq"};
       
    27 val presburger_ss = @{simpset} addsimps [zdvd1_eq];
       
    28 val lin_ss = presburger_ss addsimps (@{thm "dvd_eq_mod_eq_0"}::zdvd1_eq::zadd_ac);
       
    29 (* Some types and constants *)
       
    30 val iT = HOLogic.intT
       
    31 val bT = HOLogic.boolT;
       
    32 val dest_numeral = HOLogic.dest_number #> snd;
       
    33 
       
    34 val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = 
       
    35     map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"};
       
    36 
       
    37 val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = 
       
    38     map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"};
       
    39 
       
    40 val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = 
       
    41     map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"};
       
    42 
       
    43 val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP];
       
    44 
       
    45 val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP;
       
    46 
       
    47 val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, 
       
    48       asetgt, asetge, asetdvd, asetndvd,asetP],
       
    49      [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, 
       
    50       bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]]  = [@{thms "aset"}, @{thms "bset"}];
       
    51 
       
    52 val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, 
       
    53                                 @{thm "plusinfinity"}, @{thm "cppi"}];
       
    54 
       
    55 val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"};
       
    56 
       
    57 val [zdvd_mono,simp_from_to,all_not_ex] = 
       
    58      [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}];
       
    59 
       
    60 val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"};
       
    61 
       
    62 val eval_ss = presburger_ss addsimps [simp_from_to] delsimps [insert_iff,bex_triv];
       
    63 val eval_conv = Simplifier.rewrite eval_ss;
       
    64 
       
    65 (* recongnising cterm without moving to terms *)
       
    66 
       
    67 datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm 
       
    68             | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm
       
    69             | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox
       
    70 
       
    71 fun whatis x ct = 
       
    72 ( case (term_of ct) of 
       
    73   Const("op &",_)$_$_ => And (Thm.dest_binop ct)
       
    74 | Const ("op |",_)$_$_ => Or (Thm.dest_binop ct)
       
    75 | Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox
       
    76 | Const("Not",_) $ (Const ("op =",_)$y$_) => 
       
    77   if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox
       
    78 | Const ("Orderings.ord_class.less",_)$y$z =>
       
    79    if term_of x aconv y then Lt (Thm.dest_arg ct) 
       
    80    else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox
       
    81 | Const ("Orderings.ord_class.less_eq",_)$y$z => 
       
    82    if term_of x aconv y then Le (Thm.dest_arg ct) 
       
    83    else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox
       
    84 | Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_) =>
       
    85    if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox 
       
    86 | Const("Not",_) $ (Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_)) =>
       
    87    if term_of x aconv y then 
       
    88    NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox 
       
    89 | _ => Nox)
       
    90   handle CTERM _ => Nox; 
       
    91 
       
    92 fun get_pmi_term t = 
       
    93   let val (x,eq) = 
       
    94      (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg)
       
    95         (Thm.dest_arg t)
       
    96 in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end;
       
    97 
       
    98 val get_pmi = get_pmi_term o cprop_of;
       
    99 
       
   100 val p_v' = @{cpat "?P' :: int => bool"}; 
       
   101 val q_v' = @{cpat "?Q' :: int => bool"};
       
   102 val p_v = @{cpat "?P:: int => bool"};
       
   103 val q_v = @{cpat "?Q:: int => bool"};
       
   104 
       
   105 fun myfwd (th1, th2, th3) p q 
       
   106       [(th_1,th_2,th_3), (th_1',th_2',th_3')] = 
       
   107   let  
       
   108    val (mp', mq') = (get_pmi th_1, get_pmi th_1')
       
   109    val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) 
       
   110                    [th_1, th_1']
       
   111    val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3']
       
   112    val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2']
       
   113   in (mi_th, set_th, infD_th)
       
   114   end;
       
   115 
       
   116 val inst' = fn cts => instantiate' [] (map SOME cts);
       
   117 val infDTrue = instantiate' [] [SOME true_tm] infDP;
       
   118 val infDFalse = instantiate' [] [SOME false_tm] infDP;
       
   119 
       
   120 val cadd =  @{cterm "op + :: int => _"}
       
   121 val cmulC =  @{cterm "op * :: int => _"}
       
   122 val cminus =  @{cterm "op - :: int => _"}
       
   123 val cone =  @{cterm "1:: int"}
       
   124 val cneg = @{cterm "uminus :: int => _"}
       
   125 val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg]
       
   126 val [zero, one] = [@{term "0::int"}, @{term "1::int"}];
       
   127 
       
   128 val is_numeral = can dest_numeral; 
       
   129 
       
   130 fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); 
       
   131 fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n));
       
   132 
       
   133 val [minus1,plus1] = 
       
   134     map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd];
       
   135 
       
   136 fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, 
       
   137                            asetgt, asetge,asetdvd,asetndvd,asetP,
       
   138                            infDdvd, infDndvd, asetconj,
       
   139                            asetdisj, infDconj, infDdisj] cp =
       
   140  case (whatis x cp) of
       
   141   And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
       
   142 | Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
       
   143 | Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse))
       
   144 | NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue))
       
   145 | Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse))
       
   146 | Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse))
       
   147 | Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue))
       
   148 | Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue))
       
   149 | Dvd (d,s) => 
       
   150    ([],let val dd = dvd d
       
   151 	     in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end)
       
   152 | NDvd(d,s) => ([],let val dd = dvd d
       
   153 	      in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
       
   154 | _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP));
       
   155 
       
   156 fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt,
       
   157                            bsetge,bsetdvd,bsetndvd,bsetP,
       
   158                            infDdvd, infDndvd, bsetconj,
       
   159                            bsetdisj, infDconj, infDdisj] cp =
       
   160  case (whatis x cp) of
       
   161   And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
       
   162 | Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
       
   163 | Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse))
       
   164 | NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue))
       
   165 | Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue))
       
   166 | Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue))
       
   167 | Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse))
       
   168 | Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse))
       
   169 | Dvd (d,s) => ([],let val dd = dvd d
       
   170 	      in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end)
       
   171 | NDvd (d,s) => ([],let val dd = dvd d
       
   172 	      in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
       
   173 | _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP))
       
   174 
       
   175     (* Canonical linear form for terms, formulae etc.. *)
       
   176 fun provelin ctxt t = Goal.prove ctxt [] [] t 
       
   177                           (fn _ => EVERY [simp_tac lin_ss 1, TRY (simple_arith_tac 1)]);
       
   178 fun linear_cmul 0 tm =  zero 
       
   179   | linear_cmul n tm = 
       
   180     case tm of  
       
   181       Const("HOL.plus_class.plus",_)$a$b => addC$(linear_cmul n a)$(linear_cmul n b)
       
   182     | Const ("HOL.times_class.times",_)$c$x => mulC$(numeral1 ((curry (op *)) n) c)$x
       
   183     | Const("HOL.minus_class.minus",_)$a$b => subC$(linear_cmul n a)$(linear_cmul n b)
       
   184     | (m as Const("HOL.minus_class.uminus",_))$a => m$(linear_cmul n a)
       
   185     | _ =>  numeral1 ((curry (op *)) n) tm;
       
   186 fun earlier [] x y = false 
       
   187 	| earlier (h::t) x y = 
       
   188     if h aconv y then false else if h aconv x then true else earlier t x y; 
       
   189 
       
   190 fun linear_add vars tm1 tm2 = 
       
   191  case (tm1,tm2) of 
       
   192 	 (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c1$x1)$r1,
       
   193     Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
       
   194    if x1 = x2 then 
       
   195      let val c = numeral2 (curry (op +)) c1 c2
       
   196 	   in if c = zero then linear_add vars r1  r2  
       
   197 	      else addC$(mulC$c$x1)$(linear_add vars  r1 r2)
       
   198      end 
       
   199 	 else if earlier vars x1 x2 then addC$(mulC$ c1 $ x1)$(linear_add vars r1 tm2)
       
   200    else addC$(mulC$c2$x2)$(linear_add vars tm1 r2)
       
   201  | (Const("HOL.plus_class.plus",_) $ (Const("HOL.times_class.times",_)$c1$x1)$r1 ,_) => 
       
   202     	  addC$(mulC$c1$x1)$(linear_add vars r1 tm2)
       
   203  | (_, Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
       
   204       	  addC$(mulC$c2$x2)$(linear_add vars tm1 r2) 
       
   205  | (_,_) => numeral2 (curry (op +)) tm1 tm2;
       
   206  
       
   207 fun linear_neg tm = linear_cmul ~1 tm; 
       
   208 fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); 
       
   209 
       
   210 
       
   211 fun lint vars tm = 
       
   212 if is_numeral tm then tm 
       
   213 else case tm of 
       
   214  Const("HOL.minus_class.uminus",_)$t => linear_neg (lint vars t)
       
   215 | Const("HOL.plus_class.plus",_) $ s $ t => linear_add vars (lint vars s) (lint vars t) 
       
   216 | Const("HOL.minus_class.minus",_) $ s $ t => linear_sub vars (lint vars s) (lint vars t)
       
   217 | Const ("HOL.times_class.times",_) $ s $ t => 
       
   218   let val s' = lint vars s  
       
   219       val t' = lint vars t  
       
   220   in if is_numeral s' then (linear_cmul (dest_numeral s') t') 
       
   221      else if is_numeral t' then (linear_cmul (dest_numeral t') s') 
       
   222      else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm]))
       
   223   end 
       
   224  | _ => addC$(mulC$one$tm)$zero;
       
   225 
       
   226 fun lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less",T)$s$t)) = 
       
   227     lin vs (Const("Orderings.ord_class.less_eq",T)$t$s)
       
   228   | lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less_eq",T)$s$t)) = 
       
   229     lin vs (Const("Orderings.ord_class.less",T)$t$s)
       
   230   | lin vs (Const ("Not",T)$t) = Const ("Not",T)$ (lin vs t)
       
   231   | lin (vs as x::_) (Const("Divides.dvd",_)$d$t) = 
       
   232     HOLogic.mk_binrel "Divides.dvd" (numeral1 abs d, lint vs t)
       
   233   | lin (vs as x::_) ((b as Const("op =",_))$s$t) = 
       
   234      (case lint vs (subC$t$s) of 
       
   235       (t as a$(m$c$y)$r) => 
       
   236         if x <> y then b$zero$t
       
   237         else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
       
   238         else b$(m$c$y)$(linear_neg r)
       
   239       | t => b$zero$t)
       
   240   | lin (vs as x::_) (b$s$t) = 
       
   241      (case lint vs (subC$t$s) of 
       
   242       (t as a$(m$c$y)$r) => 
       
   243         if x <> y then b$zero$t
       
   244         else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
       
   245         else b$(linear_neg r)$(m$c$y)
       
   246       | t => b$zero$t)
       
   247   | lin vs fm = fm;
       
   248 
       
   249 fun lint_conv ctxt vs ct = 
       
   250 let val t = term_of ct
       
   251 in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop))
       
   252              RS eq_reflection
       
   253 end;
       
   254 
       
   255 fun is_intrel (b$_$_) = domain_type (fastype_of b) = HOLogic.intT
       
   256   | is_intrel (@{term "Not"}$(b$_$_)) = domain_type (fastype_of b) = HOLogic.intT
       
   257   | is_intrel _ = false;
       
   258  
       
   259 fun linearize_conv ctxt vs ct =  
       
   260  case (term_of ct) of 
       
   261   Const("Divides.dvd",_)$d$t => 
       
   262   let 
       
   263     val th = binop_conv (lint_conv ctxt vs) ct
       
   264     val (d',t') = Thm.dest_binop (Thm.rhs_of th)
       
   265     val (dt',tt') = (term_of d', term_of t')
       
   266   in if is_numeral dt' andalso is_numeral tt' 
       
   267      then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th
       
   268      else 
       
   269      let 
       
   270       val dth = 
       
   271       ((if dest_numeral (term_of d') < 0 then 
       
   272           Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs)))
       
   273                            (Thm.transitive th (inst' [d',t'] dvd_uminus))
       
   274         else th) handle TERM _ => th)
       
   275       val d'' = Thm.rhs_of dth |> Thm.dest_arg1
       
   276      in
       
   277       case tt' of 
       
   278         Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$_)$_ => 
       
   279         let val x = dest_numeral c
       
   280         in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs)))
       
   281                                        (Thm.transitive dth (inst' [d'',t'] dvd_uminus'))
       
   282         else dth end
       
   283       | _ => dth
       
   284      end
       
   285   end
       
   286 | Const("Not",_)$(Const("Divides.dvd",_)$_$_) => arg_conv (linearize_conv ctxt vs) ct
       
   287 | t => if is_intrel t 
       
   288       then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop))
       
   289        RS eq_reflection
       
   290       else reflexive ct;
       
   291 
       
   292 val dvdc = @{cterm "op dvd :: int => _"};
       
   293 
       
   294 fun unify ctxt q = 
       
   295  let
       
   296   val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE
       
   297   val x = term_of cx 
       
   298   val ins = insert (op = : int*int -> bool)
       
   299   fun h (acc,dacc) t = 
       
   300    case (term_of t) of
       
   301     Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
       
   302     if x aconv y 
       
   303        andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
       
   304     then (ins (dest_numeral c) acc,dacc) else (acc,dacc)
       
   305   | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
       
   306     if x aconv y 
       
   307        andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
       
   308     then (ins (dest_numeral c) acc, dacc) else (acc,dacc)
       
   309   | Const("Divides.dvd",_)$_$(Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_) => 
       
   310     if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc)
       
   311   | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
       
   312   | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
       
   313   | Const("Not",_)$_ => h (acc,dacc) (Thm.dest_arg t)
       
   314   | _ => (acc, dacc)
       
   315   val (cs,ds) = h ([],[]) p
       
   316   val l = fold (curry lcm) (cs union ds) 1
       
   317   fun cv k ct = 
       
   318     let val (tm as b$s$t) = term_of ct 
       
   319     in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t))
       
   320          |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end
       
   321   fun nzprop x = 
       
   322    let 
       
   323     val th = 
       
   324      Simplifier.rewrite lin_ss 
       
   325       (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} 
       
   326            (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (mk_cnumber @{ctyp "int"} x)) 
       
   327            @{cterm "0::int"})))
       
   328    in equal_elim (Thm.symmetric th) TrueI end;
       
   329   val notz = let val tab = fold Inttab.update 
       
   330                                (ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty 
       
   331             in 
       
   332              (fn ct => (valOf (Inttab.lookup tab (ct |> term_of |> dest_numeral)) 
       
   333                 handle Option => (writeln "noz: Theorems-Table contains no entry for"; 
       
   334                                     print_cterm ct ; raise Option)))
       
   335            end
       
   336   fun unit_conv t = 
       
   337    case (term_of t) of
       
   338    Const("op &",_)$_$_ => binop_conv unit_conv t
       
   339   | Const("op |",_)$_$_ => binop_conv unit_conv t
       
   340   | Const("Not",_)$_ => arg_conv unit_conv t
       
   341   | Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
       
   342     if x=y andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
       
   343     then cv (l div (dest_numeral c)) t else Thm.reflexive t
       
   344   | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
       
   345     if x=y andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
       
   346     then cv (l div (dest_numeral c)) t else Thm.reflexive t
       
   347   | Const("Divides.dvd",_)$d$(r as (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_)) => 
       
   348     if x=y then 
       
   349       let 
       
   350        val k = l div (dest_numeral c)
       
   351        val kt = HOLogic.mk_number iT k
       
   352        val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] 
       
   353              ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono)
       
   354        val (d',t') = (mulC$kt$d, mulC$kt$r)
       
   355        val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop))
       
   356                    RS eq_reflection
       
   357        val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop))
       
   358                  RS eq_reflection
       
   359       in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end                 
       
   360     else Thm.reflexive t
       
   361   | _ => Thm.reflexive t
       
   362   val uth = unit_conv p
       
   363   val clt =  mk_cnumber @{ctyp "int"} l
       
   364   val ltx = Thm.capply (Thm.capply cmulC clt) cx
       
   365   val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth)
       
   366   val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex
       
   367   val thf = transitive th 
       
   368       (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th')
       
   369   val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true
       
   370                   ||> beta_conversion true |>> Thm.symmetric
       
   371  in transitive (transitive lth thf) rth end;
       
   372 
       
   373 
       
   374 val emptyIS = @{cterm "{}::int set"};
       
   375 val insert_tm = @{cterm "insert :: int => _"};
       
   376 val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT);
       
   377 fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS;
       
   378 val cTrp = @{cterm "Trueprop"};
       
   379 val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1;
       
   380 val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg 
       
   381                                       |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg)
       
   382                       [asetP,bsetP];
       
   383 
       
   384 val D_tm = @{cpat "?D::int"};
       
   385 
       
   386 val int_eq = (op =):int*int -> bool;
       
   387 fun cooperex_conv ctxt vs q = 
       
   388 let 
       
   389 
       
   390  val uth = unify ctxt q
       
   391  val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth))
       
   392  val ins = insert (op aconvc)
       
   393  fun h t (bacc,aacc,dacc) = 
       
   394   case (whatis x t) of
       
   395     And (p,q) => h q (h p (bacc,aacc,dacc))
       
   396   | Or (p,q) => h q  (h p (bacc,aacc,dacc))
       
   397   | Eq t => (ins (minus1 t) bacc, 
       
   398              ins (plus1 t) aacc,dacc)
       
   399   | NEq t => (ins t bacc, 
       
   400               ins t aacc, dacc)
       
   401   | Lt t => (bacc, ins t aacc, dacc)
       
   402   | Le t => (bacc, ins (plus1 t) aacc,dacc)
       
   403   | Gt t => (ins t bacc, aacc,dacc)
       
   404   | Ge t => (ins (minus1 t) bacc, aacc,dacc)
       
   405   | Dvd (d,s) => (bacc,aacc,insert int_eq (term_of d |> dest_numeral) dacc)
       
   406   | NDvd (d,s) => (bacc,aacc,insert int_eq (term_of d|> dest_numeral) dacc)
       
   407   | _ => (bacc, aacc, dacc)
       
   408  val (b0,a0,ds) = h p ([],[],[])
       
   409  val d = fold (curry lcm) ds 1
       
   410  val cd = mk_cnumber @{ctyp "int"} d
       
   411  val dt = term_of cd
       
   412  fun divprop x = 
       
   413    let 
       
   414     val th = 
       
   415      Simplifier.rewrite lin_ss 
       
   416       (Thm.capply @{cterm Trueprop} 
       
   417            (Thm.capply (Thm.capply dvdc (mk_cnumber @{ctyp "int"} x)) cd))
       
   418    in equal_elim (Thm.symmetric th) TrueI end;
       
   419  val dvd = let val tab = fold Inttab.update
       
   420                                (ds ~~ (map divprop ds)) Inttab.empty in 
       
   421            (fn ct => (valOf (Inttab.lookup tab (term_of ct |> dest_numeral)) 
       
   422                     handle Option => (writeln "dvd: Theorems-Table contains no entry for"; 
       
   423                                       print_cterm ct ; raise Option)))
       
   424            end
       
   425  val dp = 
       
   426    let val th = Simplifier.rewrite lin_ss 
       
   427       (Thm.capply @{cterm Trueprop} 
       
   428            (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd))
       
   429    in equal_elim (Thm.symmetric th) TrueI end;
       
   430     (* A and B set *)
       
   431    local 
       
   432      val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"}
       
   433      val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"}
       
   434    in
       
   435     fun provein x S = 
       
   436      case term_of S of
       
   437         Const("{}",_) => error "Unexpected error in Cooper please email Amine Chaieb"
       
   438       | Const("insert",_)$y$_ => 
       
   439          let val (cy,S') = Thm.dest_binop S
       
   440          in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
       
   441          else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
       
   442                            (provein x S')
       
   443          end
       
   444    end
       
   445  
       
   446  val al = map (lint vs o term_of) a0
       
   447  val bl = map (lint vs o term_of) b0
       
   448  val (sl,s0,f,abths,cpth) = 
       
   449    if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) 
       
   450    then  
       
   451     (bl,b0,decomp_minf,
       
   452      fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) 
       
   453                      [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@
       
   454                    (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) 
       
   455                         [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj,
       
   456                          bsetdisj,infDconj, infDdisj]),
       
   457                        cpmi) 
       
   458      else (al,a0,decomp_pinf,fn A => 
       
   459           (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp)
       
   460                    [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@
       
   461                    (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) 
       
   462                    [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj,
       
   463                          asetdisj,infDconj, infDdisj]),cppi)
       
   464  val cpth = 
       
   465   let
       
   466    val sths = map (fn (tl,t0) => 
       
   467                       if tl = term_of t0 
       
   468                       then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl
       
   469                       else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) 
       
   470                                  |> HOLogic.mk_Trueprop)) 
       
   471                    (sl ~~ s0)
       
   472    val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths)
       
   473    val S = mkISet csl
       
   474    val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) 
       
   475                     csl Termtab.empty
       
   476    val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp
       
   477    val inS = 
       
   478      let 
       
   479       fun transmem th0 th1 = 
       
   480        Thm.equal_elim 
       
   481         (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule 
       
   482                ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1
       
   483       val tab = fold Termtab.update
       
   484         (map (fn eq => 
       
   485                 let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop 
       
   486                     val th = if term_of s = term_of t 
       
   487                              then valOf(Termtab.lookup inStab (term_of s))
       
   488                              else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) 
       
   489                                 [eq, valOf(Termtab.lookup inStab (term_of s))]
       
   490                  in (term_of t, th) end)
       
   491                   sths) Termtab.empty
       
   492         in fn ct => 
       
   493           (valOf (Termtab.lookup tab (term_of ct))
       
   494            handle Option => (writeln "inS: No theorem for " ; print_cterm ct ; raise Option))
       
   495         end
       
   496        val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p
       
   497    in [dp, inf, nb, pd] MRS cpth
       
   498    end
       
   499  val cpth' = Thm.transitive uth (cpth RS eq_reflection)
       
   500 in Thm.transitive cpth' ((simp_thms_conv then_conv eval_conv) (Thm.rhs_of cpth'))
       
   501 end;
       
   502 
       
   503 fun literals_conv bops uops env cv = 
       
   504  let fun h t =
       
   505   case (term_of t) of 
       
   506    b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t
       
   507  | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t
       
   508  | _ => cv env t
       
   509  in h end;
       
   510 
       
   511 fun integer_nnf_conv ctxt env =
       
   512  nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt);
       
   513 
       
   514 (* val my_term = ref (@{cterm "NOTHING"}); *)
       
   515 local
       
   516  val pcv = Simplifier.rewrite 
       
   517      (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) 
       
   518                       @ [not_all,all_not_ex, ex_disj_distrib]))
       
   519  val postcv = Simplifier.rewrite presburger_ss
       
   520  fun conv ctxt p = 
       
   521   let val _ = () (* my_term := p *)
       
   522   in
       
   523    Qelim.gen_qelim_conv pcv postcv pcv (cons o term_of) 
       
   524       (term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) 
       
   525       (cooperex_conv ctxt) p 
       
   526   end
       
   527   handle  CTERM s => raise COOPER ("Cooper Failed", CTERM s)
       
   528         | THM s => raise COOPER ("Cooper Failed", THM s) 
       
   529 in val cooper_conv = conv 
       
   530 end;
       
   531 end;
       
   532 
       
   533 
       
   534 
       
   535 structure Coopereif =
       
   536 struct
       
   537 
       
   538 open GeneratedCooper;
       
   539 fun cooper s = raise Cooper.COOPER ("Cooper Oracle Failed", ERROR s);
       
   540 fun i_of_term vs t = 
       
   541     case t of
       
   542 	Free(xn,xT) => (case AList.lookup (op aconv) vs t of 
       
   543 			   NONE   => cooper "Variable not found in the list!!"
       
   544 			 | SOME n => Bound n)
       
   545       | @{term "0::int"} => C 0
       
   546       | @{term "1::int"} => C 1
       
   547       | Term.Bound i => Bound i
       
   548       | Const(@{const_name "HOL.uminus"},_)$t' => Neg (i_of_term vs t')
       
   549       | Const(@{const_name "HOL.plus"},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
       
   550       | Const(@{const_name "HOL.minus"},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
       
   551       | Const(@{const_name "HOL.times"},_)$t1$t2 => 
       
   552 	     (Mul (HOLogic.dest_number t1 |> snd,i_of_term vs t2)
       
   553         handle TERM _ => 
       
   554            (Mul (HOLogic.dest_number t2 |> snd,i_of_term vs t1)
       
   555             handle TERM _ => cooper "i_of_term: Unsupported kind of multiplication"))
       
   556       | _ => (C (HOLogic.dest_number t |> snd) 
       
   557                handle TERM _ => cooper "i_of_term: unknown term");
       
   558 	
       
   559 fun qf_of_term ps vs t = 
       
   560     case t of 
       
   561 	Const("True",_) => T
       
   562       | Const("False",_) => F
       
   563       | Const(@{const_name "Orderings.less"},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2))
       
   564       | Const(@{const_name "Orderings.less_eq"},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2))
       
   565       | Const(@{const_name "Divides.dvd"},_)$t1$t2 => 
       
   566 	(Dvd(HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle _ => cooper "qf_of_term: unsupported dvd")
       
   567       | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2))
       
   568       | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2)
       
   569       | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2)
       
   570       | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2)
       
   571       | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2)
       
   572       | Const("Not",_)$t' => NOT(qf_of_term ps vs t')
       
   573       | Const("Ex",_)$Abs(xn,xT,p) => 
       
   574          let val (xn',p') = variant_abs (xn,xT,p)
       
   575              val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
       
   576          in E (qf_of_term ps vs' p')
       
   577          end
       
   578       | Const("All",_)$Abs(xn,xT,p) => 
       
   579          let val (xn',p') = variant_abs (xn,xT,p)
       
   580              val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
       
   581          in A (qf_of_term ps vs' p')
       
   582          end
       
   583       | _ =>(case AList.lookup (op aconv) ps t of 
       
   584                NONE => cooper "qf_of_term ps : unknown term!"
       
   585              | SOME n => Closed n);
       
   586 
       
   587 local
       
   588  val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"},
       
   589              @{term "op = :: int => _"}, @{term "op < :: int => _"}, 
       
   590              @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, 
       
   591              @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}]
       
   592 fun ty t = Bool.not (fastype_of t = HOLogic.boolT)
       
   593 in
       
   594 fun term_bools acc t =
       
   595 case t of 
       
   596     (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b 
       
   597             else insert (op aconv) t acc
       
   598   | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a  
       
   599             else insert (op aconv) t acc
       
   600   | Abs p => term_bools acc (snd (variant_abs p))
       
   601   | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc
       
   602 end;
       
   603  
       
   604 
       
   605 fun start_vs t =
       
   606 let
       
   607  val fs = term_frees t
       
   608  val ps = term_bools [] t
       
   609 in (fs ~~ (0 upto  (length fs - 1)), ps ~~ (0 upto  (length ps - 1)))
       
   610 end ;
       
   611 
       
   612 val iT = HOLogic.intT;
       
   613 val bT = HOLogic.boolT;
       
   614 fun myassoc2 l v =
       
   615     case l of
       
   616 	[] => NONE
       
   617       | (x,v')::xs => if v = v' then SOME x
       
   618 		      else myassoc2 xs v;
       
   619 
       
   620 fun term_of_i vs t =
       
   621     case t of 
       
   622 	C i => HOLogic.mk_number HOLogic.intT i
       
   623       | Bound n => valOf (myassoc2 vs n)
       
   624       | Neg t' => @{term "uminus :: int => _"}$(term_of_i vs t')
       
   625       | Add(t1,t2) => @{term "op +:: int => _"}$ (term_of_i vs t1)$(term_of_i vs t2)
       
   626       | Sub(t1,t2) => Const(@{const_name "HOL.minus"},[iT,iT] ---> iT)$
       
   627 			   (term_of_i vs t1)$(term_of_i vs t2)
       
   628       | Mul(i,t2) => Const(@{const_name "HOL.times"},[iT,iT] ---> iT)$
       
   629 			   (HOLogic.mk_number HOLogic.intT i)$(term_of_i vs t2)
       
   630       | CX(i,t')=> term_of_i vs (Add(Mul (i,Bound (nat 0)),t'));
       
   631 
       
   632 fun term_of_qf ps vs t = 
       
   633  case t of 
       
   634    T => HOLogic.true_const 
       
   635  | F => HOLogic.false_const
       
   636  | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
       
   637  | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"}
       
   638  | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
       
   639  | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
       
   640  | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
       
   641  | NEq t' => term_of_qf ps vs (NOT(Eq t'))
       
   642  | Dvd(i,t') => @{term "op dvd :: int => _ "}$ 
       
   643                  (HOLogic.mk_number HOLogic.intT i)$(term_of_i vs t')
       
   644  | NDvd(i,t')=> term_of_qf ps vs (NOT(Dvd(i,t')))
       
   645  | NOT t' => HOLogic.Not$(term_of_qf ps vs t')
       
   646  | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
       
   647  | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
       
   648  | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
       
   649  | Iff(t1,t2) => (HOLogic.eq_const bT)$(term_of_qf ps vs t1)$ (term_of_qf ps vs t2)
       
   650  | Closed n => valOf (myassoc2 ps n)
       
   651  | NClosed n => term_of_qf ps vs (NOT (Closed n))
       
   652  | _ => cooper "If this is raised, Isabelle/HOL or generate_code is inconsistent!";
       
   653 
       
   654 (* The oracle *)
       
   655 fun cooper_oracle thy t = 
       
   656     let val (vs,ps) = start_vs t
       
   657     in (equals propT) $ (HOLogic.mk_Trueprop t) $ 
       
   658             (HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t))))
       
   659     end;
       
   660 
       
   661 end;