src/ZF/Constructible/Separation.thy
changeset 60770 240563fbf41d
parent 58871 c399ae4b836f
child 61798 27f3c10b0b50
equal deleted inserted replaced
60769:cf7f3465eaf1 60770:240563fbf41d
     1 (*  Title:      ZF/Constructible/Separation.thy
     1 (*  Title:      ZF/Constructible/Separation.thy
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3 *)
     3 *)
     4 
     4 
     5 section{*Early Instances of Separation and Strong Replacement*}
     5 section\<open>Early Instances of Separation and Strong Replacement\<close>
     6 
     6 
     7 theory Separation imports L_axioms WF_absolute begin
     7 theory Separation imports L_axioms WF_absolute begin
     8 
     8 
     9 text{*This theory proves all instances needed for locale @{text "M_basic"}*}
     9 text\<open>This theory proves all instances needed for locale @{text "M_basic"}\<close>
    10 
    10 
    11 text{*Helps us solve for de Bruijn indices!*}
    11 text\<open>Helps us solve for de Bruijn indices!\<close>
    12 lemma nth_ConsI: "[|nth(n,l) = x; n \<in> nat|] ==> nth(succ(n), Cons(a,l)) = x"
    12 lemma nth_ConsI: "[|nth(n,l) = x; n \<in> nat|] ==> nth(succ(n), Cons(a,l)) = x"
    13 by simp
    13 by simp
    14 
    14 
    15 lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
    15 lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
    16 lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
    16 lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
    34 apply (unfold separation_def, clarify)
    34 apply (unfold separation_def, clarify)
    35 apply (rule_tac x="{x\<in>z. P(x)}" in rexI)
    35 apply (rule_tac x="{x\<in>z. P(x)}" in rexI)
    36 apply simp_all
    36 apply simp_all
    37 done
    37 done
    38 
    38 
    39 text{*Reduces the original comprehension to the reflected one*}
    39 text\<open>Reduces the original comprehension to the reflected one\<close>
    40 lemma reflection_imp_L_separation:
    40 lemma reflection_imp_L_separation:
    41       "[| \<forall>x\<in>Lset(j). P(x) \<longleftrightarrow> Q(x);
    41       "[| \<forall>x\<in>Lset(j). P(x) \<longleftrightarrow> Q(x);
    42           {x \<in> Lset(j) . Q(x)} \<in> DPow(Lset(j));
    42           {x \<in> Lset(j) . Q(x)} \<in> DPow(Lset(j));
    43           Ord(j);  z \<in> Lset(j)|] ==> L({x \<in> z . P(x)})"
    43           Ord(j);  z \<in> Lset(j)|] ==> L({x \<in> z . P(x)})"
    44 apply (rule_tac i = "succ(j)" in L_I)
    44 apply (rule_tac i = "succ(j)" in L_I)
    47  prefer 2
    47  prefer 2
    48  apply (blast dest: mem_Lset_imp_subset_Lset)
    48  apply (blast dest: mem_Lset_imp_subset_Lset)
    49 apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
    49 apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
    50 done
    50 done
    51 
    51 
    52 text{*Encapsulates the standard proof script for proving instances of 
    52 text\<open>Encapsulates the standard proof script for proving instances of 
    53       Separation.*}
    53       Separation.\<close>
    54 lemma gen_separation:
    54 lemma gen_separation:
    55  assumes reflection: "REFLECTS [P,Q]"
    55  assumes reflection: "REFLECTS [P,Q]"
    56      and Lu:         "L(u)"
    56      and Lu:         "L(u)"
    57      and collI: "!!j. u \<in> Lset(j)
    57      and collI: "!!j. u \<in> Lset(j)
    58                 \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
    58                 \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
    64 apply (erule reflection_imp_L_separation)
    64 apply (erule reflection_imp_L_separation)
    65   apply (simp_all add: lt_Ord2, clarify)
    65   apply (simp_all add: lt_Ord2, clarify)
    66 apply (rule collI, assumption)
    66 apply (rule collI, assumption)
    67 done
    67 done
    68 
    68 
    69 text{*As above, but typically @{term u} is a finite enumeration such as
    69 text\<open>As above, but typically @{term u} is a finite enumeration such as
    70   @{term "{a,b}"}; thus the new subgoal gets the assumption
    70   @{term "{a,b}"}; thus the new subgoal gets the assumption
    71   @{term "{a,b} \<subseteq> Lset(i)"}, which is logically equivalent to 
    71   @{term "{a,b} \<subseteq> Lset(i)"}, which is logically equivalent to 
    72   @{term "a \<in> Lset(i)"} and @{term "b \<in> Lset(i)"}.*}
    72   @{term "a \<in> Lset(i)"} and @{term "b \<in> Lset(i)"}.\<close>
    73 lemma gen_separation_multi:
    73 lemma gen_separation_multi:
    74  assumes reflection: "REFLECTS [P,Q]"
    74  assumes reflection: "REFLECTS [P,Q]"
    75      and Lu:         "L(u)"
    75      and Lu:         "L(u)"
    76      and collI: "!!j. u \<subseteq> Lset(j)
    76      and collI: "!!j. u \<subseteq> Lset(j)
    77                 \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
    77                 \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
    80 apply (drule mem_Lset_imp_subset_Lset)
    80 apply (drule mem_Lset_imp_subset_Lset)
    81 apply (erule collI) 
    81 apply (erule collI) 
    82 done
    82 done
    83 
    83 
    84 
    84 
    85 subsection{*Separation for Intersection*}
    85 subsection\<open>Separation for Intersection\<close>
    86 
    86 
    87 lemma Inter_Reflects:
    87 lemma Inter_Reflects:
    88      "REFLECTS[\<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x \<in> y,
    88      "REFLECTS[\<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x \<in> y,
    89                \<lambda>i x. \<forall>y\<in>Lset(i). y\<in>A \<longrightarrow> x \<in> y]"
    89                \<lambda>i x. \<forall>y\<in>Lset(i). y\<in>A \<longrightarrow> x \<in> y]"
    90 by (intro FOL_reflections)
    90 by (intro FOL_reflections)
    91 
    91 
    92 lemma Inter_separation:
    92 lemma Inter_separation:
    93      "L(A) ==> separation(L, \<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x\<in>y)"
    93      "L(A) ==> separation(L, \<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x\<in>y)"
    94 apply (rule gen_separation [OF Inter_Reflects], simp)
    94 apply (rule gen_separation [OF Inter_Reflects], simp)
    95 apply (rule DPow_LsetI)
    95 apply (rule DPow_LsetI)
    96  txt{*I leave this one example of a manual proof.  The tedium of manually
    96  txt\<open>I leave this one example of a manual proof.  The tedium of manually
    97       instantiating @{term i}, @{term j} and @{term env} is obvious. *}
    97       instantiating @{term i}, @{term j} and @{term env} is obvious.\<close>
    98 apply (rule ball_iff_sats)
    98 apply (rule ball_iff_sats)
    99 apply (rule imp_iff_sats)
    99 apply (rule imp_iff_sats)
   100 apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
   100 apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
   101 apply (rule_tac i=0 and j=2 in mem_iff_sats)
   101 apply (rule_tac i=0 and j=2 in mem_iff_sats)
   102 apply (simp_all add: succ_Un_distrib [symmetric])
   102 apply (simp_all add: succ_Un_distrib [symmetric])
   103 done
   103 done
   104 
   104 
   105 subsection{*Separation for Set Difference*}
   105 subsection\<open>Separation for Set Difference\<close>
   106 
   106 
   107 lemma Diff_Reflects:
   107 lemma Diff_Reflects:
   108      "REFLECTS[\<lambda>x. x \<notin> B, \<lambda>i x. x \<notin> B]"
   108      "REFLECTS[\<lambda>x. x \<notin> B, \<lambda>i x. x \<notin> B]"
   109 by (intro FOL_reflections)  
   109 by (intro FOL_reflections)  
   110 
   110 
   113 apply (rule gen_separation [OF Diff_Reflects], simp)
   113 apply (rule gen_separation [OF Diff_Reflects], simp)
   114 apply (rule_tac env="[B]" in DPow_LsetI)
   114 apply (rule_tac env="[B]" in DPow_LsetI)
   115 apply (rule sep_rules | simp)+
   115 apply (rule sep_rules | simp)+
   116 done
   116 done
   117 
   117 
   118 subsection{*Separation for Cartesian Product*}
   118 subsection\<open>Separation for Cartesian Product\<close>
   119 
   119 
   120 lemma cartprod_Reflects:
   120 lemma cartprod_Reflects:
   121      "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)),
   121      "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)),
   122                 \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). y\<in>B &
   122                 \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). y\<in>B &
   123                                    pair(##Lset(i),x,y,z))]"
   123                                    pair(##Lset(i),x,y,z))]"
   129 apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
   129 apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
   130 apply (rule_tac env="[A,B]" in DPow_LsetI)
   130 apply (rule_tac env="[A,B]" in DPow_LsetI)
   131 apply (rule sep_rules | simp)+
   131 apply (rule sep_rules | simp)+
   132 done
   132 done
   133 
   133 
   134 subsection{*Separation for Image*}
   134 subsection\<open>Separation for Image\<close>
   135 
   135 
   136 lemma image_Reflects:
   136 lemma image_Reflects:
   137      "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)),
   137      "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)),
   138            \<lambda>i y. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). x\<in>A & pair(##Lset(i),x,y,p))]"
   138            \<lambda>i y. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). x\<in>A & pair(##Lset(i),x,y,p))]"
   139 by (intro FOL_reflections function_reflections)
   139 by (intro FOL_reflections function_reflections)
   145 apply (rule_tac env="[A,r]" in DPow_LsetI)
   145 apply (rule_tac env="[A,r]" in DPow_LsetI)
   146 apply (rule sep_rules | simp)+
   146 apply (rule sep_rules | simp)+
   147 done
   147 done
   148 
   148 
   149 
   149 
   150 subsection{*Separation for Converse*}
   150 subsection\<open>Separation for Converse\<close>
   151 
   151 
   152 lemma converse_Reflects:
   152 lemma converse_Reflects:
   153   "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
   153   "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
   154      \<lambda>i z. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i).
   154      \<lambda>i z. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i).
   155                      pair(##Lset(i),x,y,p) & pair(##Lset(i),y,x,z))]"
   155                      pair(##Lset(i),x,y,p) & pair(##Lset(i),y,x,z))]"
   162 apply (rule_tac env="[r]" in DPow_LsetI)
   162 apply (rule_tac env="[r]" in DPow_LsetI)
   163 apply (rule sep_rules | simp)+
   163 apply (rule sep_rules | simp)+
   164 done
   164 done
   165 
   165 
   166 
   166 
   167 subsection{*Separation for Restriction*}
   167 subsection\<open>Separation for Restriction\<close>
   168 
   168 
   169 lemma restrict_Reflects:
   169 lemma restrict_Reflects:
   170      "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)),
   170      "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)),
   171         \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). pair(##Lset(i),x,y,z))]"
   171         \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). pair(##Lset(i),x,y,z))]"
   172 by (intro FOL_reflections function_reflections)
   172 by (intro FOL_reflections function_reflections)
   177 apply (rule_tac env="[A]" in DPow_LsetI)
   177 apply (rule_tac env="[A]" in DPow_LsetI)
   178 apply (rule sep_rules | simp)+
   178 apply (rule sep_rules | simp)+
   179 done
   179 done
   180 
   180 
   181 
   181 
   182 subsection{*Separation for Composition*}
   182 subsection\<open>Separation for Composition\<close>
   183 
   183 
   184 lemma comp_Reflects:
   184 lemma comp_Reflects:
   185      "REFLECTS[\<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
   185      "REFLECTS[\<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
   186                   pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
   186                   pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
   187                   xy\<in>s & yz\<in>r,
   187                   xy\<in>s & yz\<in>r,
   194      "[| L(r); L(s) |]
   194      "[| L(r); L(s) |]
   195       ==> separation(L, \<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
   195       ==> separation(L, \<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
   196                   pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
   196                   pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
   197                   xy\<in>s & yz\<in>r)"
   197                   xy\<in>s & yz\<in>r)"
   198 apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)
   198 apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)
   199 txt{*Subgoals after applying general ``separation'' rule:
   199 txt\<open>Subgoals after applying general ``separation'' rule:
   200      @{subgoals[display,indent=0,margin=65]}*}
   200      @{subgoals[display,indent=0,margin=65]}\<close>
   201 apply (rule_tac env="[r,s]" in DPow_LsetI)
   201 apply (rule_tac env="[r,s]" in DPow_LsetI)
   202 txt{*Subgoals ready for automatic synthesis of a formula:
   202 txt\<open>Subgoals ready for automatic synthesis of a formula:
   203      @{subgoals[display,indent=0,margin=65]}*}
   203      @{subgoals[display,indent=0,margin=65]}\<close>
   204 apply (rule sep_rules | simp)+
   204 apply (rule sep_rules | simp)+
   205 done
   205 done
   206 
   206 
   207 
   207 
   208 subsection{*Separation for Predecessors in an Order*}
   208 subsection\<open>Separation for Predecessors in an Order\<close>
   209 
   209 
   210 lemma pred_Reflects:
   210 lemma pred_Reflects:
   211      "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p),
   211      "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p),
   212                     \<lambda>i y. \<exists>p \<in> Lset(i). p\<in>r & pair(##Lset(i),y,x,p)]"
   212                     \<lambda>i y. \<exists>p \<in> Lset(i). p\<in>r & pair(##Lset(i),y,x,p)]"
   213 by (intro FOL_reflections function_reflections)
   213 by (intro FOL_reflections function_reflections)
   218 apply (rule_tac env="[r,x]" in DPow_LsetI)
   218 apply (rule_tac env="[r,x]" in DPow_LsetI)
   219 apply (rule sep_rules | simp)+
   219 apply (rule sep_rules | simp)+
   220 done
   220 done
   221 
   221 
   222 
   222 
   223 subsection{*Separation for the Membership Relation*}
   223 subsection\<open>Separation for the Membership Relation\<close>
   224 
   224 
   225 lemma Memrel_Reflects:
   225 lemma Memrel_Reflects:
   226      "REFLECTS[\<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y,
   226      "REFLECTS[\<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y,
   227             \<lambda>i z. \<exists>x \<in> Lset(i). \<exists>y \<in> Lset(i). pair(##Lset(i),x,y,z) & x \<in> y]"
   227             \<lambda>i z. \<exists>x \<in> Lset(i). \<exists>y \<in> Lset(i). pair(##Lset(i),x,y,z) & x \<in> y]"
   228 by (intro FOL_reflections function_reflections)
   228 by (intro FOL_reflections function_reflections)
   233 apply (rule_tac env="[]" in DPow_LsetI)
   233 apply (rule_tac env="[]" in DPow_LsetI)
   234 apply (rule sep_rules | simp)+
   234 apply (rule sep_rules | simp)+
   235 done
   235 done
   236 
   236 
   237 
   237 
   238 subsection{*Replacement for FunSpace*}
   238 subsection\<open>Replacement for FunSpace\<close>
   239 
   239 
   240 lemma funspace_succ_Reflects:
   240 lemma funspace_succ_Reflects:
   241  "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>A & (\<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
   241  "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>A & (\<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
   242             pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
   242             pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
   243             upair(L,cnbf,cnbf,z)),
   243             upair(L,cnbf,cnbf,z)),
   258 apply (rule_tac env="[n,B]" in DPow_LsetI)
   258 apply (rule_tac env="[n,B]" in DPow_LsetI)
   259 apply (rule sep_rules | simp)+
   259 apply (rule sep_rules | simp)+
   260 done
   260 done
   261 
   261 
   262 
   262 
   263 subsection{*Separation for a Theorem about @{term "is_recfun"}*}
   263 subsection\<open>Separation for a Theorem about @{term "is_recfun"}\<close>
   264 
   264 
   265 lemma is_recfun_reflects:
   265 lemma is_recfun_reflects:
   266   "REFLECTS[\<lambda>x. \<exists>xa[L]. \<exists>xb[L].
   266   "REFLECTS[\<lambda>x. \<exists>xa[L]. \<exists>xb[L].
   267                 pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
   267                 pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
   268                 (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
   268                 (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
   272                 (\<exists>fx \<in> Lset(i). \<exists>gx \<in> Lset(i). fun_apply(##Lset(i),f,x,fx) &
   272                 (\<exists>fx \<in> Lset(i). \<exists>gx \<in> Lset(i). fun_apply(##Lset(i),f,x,fx) &
   273                   fun_apply(##Lset(i),g,x,gx) & fx \<noteq> gx)]"
   273                   fun_apply(##Lset(i),g,x,gx) & fx \<noteq> gx)]"
   274 by (intro FOL_reflections function_reflections fun_plus_reflections)
   274 by (intro FOL_reflections function_reflections fun_plus_reflections)
   275 
   275 
   276 lemma is_recfun_separation:
   276 lemma is_recfun_separation:
   277      --{*for well-founded recursion*}
   277      --\<open>for well-founded recursion\<close>
   278      "[| L(r); L(f); L(g); L(a); L(b) |]
   278      "[| L(r); L(f); L(g); L(a); L(b) |]
   279      ==> separation(L,
   279      ==> separation(L,
   280             \<lambda>x. \<exists>xa[L]. \<exists>xb[L].
   280             \<lambda>x. \<exists>xa[L]. \<exists>xb[L].
   281                 pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
   281                 pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
   282                 (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
   282                 (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
   286 apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
   286 apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
   287 apply (rule sep_rules | simp)+
   287 apply (rule sep_rules | simp)+
   288 done
   288 done
   289 
   289 
   290 
   290 
   291 subsection{*Instantiating the locale @{text M_basic}*}
   291 subsection\<open>Instantiating the locale @{text M_basic}\<close>
   292 text{*Separation (and Strong Replacement) for basic set-theoretic constructions
   292 text\<open>Separation (and Strong Replacement) for basic set-theoretic constructions
   293 such as intersection, Cartesian Product and image.*}
   293 such as intersection, Cartesian Product and image.\<close>
   294 
   294 
   295 lemma M_basic_axioms_L: "M_basic_axioms(L)"
   295 lemma M_basic_axioms_L: "M_basic_axioms(L)"
   296   apply (rule M_basic_axioms.intro)
   296   apply (rule M_basic_axioms.intro)
   297        apply (assumption | rule
   297        apply (assumption | rule
   298          Inter_separation Diff_separation cartprod_separation image_separation
   298          Inter_separation Diff_separation cartprod_separation image_separation