src/HOLCF/ex/Stream.ML
changeset 2570 24d7e8fb8261
child 3324 6b26b886ff69
equal deleted inserted replaced
2569:3a8604f408c9 2570:24d7e8fb8261
       
     1 (*  Title: 	FOCUS/Stream.ML
       
     2     ID:         $ $
       
     3     Author: 	Franz Regensburger, David von Oheimb
       
     4     Copyright   1993, 1995 Technische Universitaet Muenchen
       
     5 
       
     6 Theorems for Stream.thy
       
     7 *)
       
     8 
       
     9 open Stream;
       
    10 
       
    11 fun stream_case_tac s i = res_inst_tac [("x",s)] stream.cases i
       
    12 			  THEN hyp_subst_tac i THEN hyp_subst_tac (i+1);
       
    13 
       
    14 
       
    15 (* ----------------------------------------------------------------------- *)
       
    16 (* theorems about scons                                                    *)
       
    17 (* ----------------------------------------------------------------------- *)
       
    18 
       
    19 section "scons";
       
    20 
       
    21 qed_goal "scons_eq_UU" thy "a && s = UU = (a = UU)" (fn _ => [
       
    22 	safe_tac HOL_cs,
       
    23 	etac contrapos2 1,
       
    24 	safe_tac (HOL_cs addSIs stream.con_rews)]);
       
    25 
       
    26 qed_goal "scons_not_empty" thy "[| a && x = UU; a ~= UU |] ==> R" (fn prems => [
       
    27 	cut_facts_tac prems 1,
       
    28 	dresolve_tac stream.con_rews 1,
       
    29 	contr_tac 1]);
       
    30 
       
    31 qed_goal "stream_exhaust_eq" thy "x ~= UU = (? a y. a ~= UU &  x = a && y)" (fn _ =>[
       
    32 	cut_facts_tac [stream.exhaust] 1,
       
    33 	safe_tac HOL_cs,
       
    34 	   contr_tac 1,
       
    35 	  fast_tac (HOL_cs addDs (tl stream.con_rews)) 1,
       
    36 	 fast_tac HOL_cs 1,
       
    37 	fast_tac (HOL_cs addDs (tl stream.con_rews)) 1]);
       
    38 
       
    39 qed_goal "stream_prefix" thy 
       
    40 "[| a && s << t; a ~= UU  |] ==> ? b tt. t = b && tt &  b ~= UU &  s << tt" (fn prems => [
       
    41 	cut_facts_tac prems 1,
       
    42 	stream_case_tac "t" 1,
       
    43 	 fast_tac (HOL_cs addDs [eq_UU_iff RS iffD2,hd (tl stream.con_rews)]) 1,
       
    44 	fast_tac (HOL_cs addDs stream.inverts) 1]);
       
    45 
       
    46 qed_goal "stream_flat_prefix" thy 
       
    47 "[| x && xs << y && ys; (x::'a) ~= UU; flat (z::'a) |] ==> x = y &  xs << ys"(fn prems=>[
       
    48 	cut_facts_tac prems 1,
       
    49 	(forward_tac stream.inverts 1),
       
    50 	(safe_tac HOL_cs),
       
    51 	(dtac (hd stream.con_rews RS subst) 1),
       
    52 	(fast_tac (HOL_cs addDs ((eq_UU_iff RS iffD2)::stream.con_rews)) 1),
       
    53 	(rewtac flat_def),
       
    54 	(fast_tac HOL_cs 1)]);
       
    55 
       
    56 qed_goal "stream_prefix'" thy "b ~= UU ==> x << b && z = \
       
    57 \(x = UU |  (? a y. x = a && y &  a ~= UU &  a << b &  y << z))" (fn prems => [
       
    58 	cut_facts_tac prems 1,
       
    59 	safe_tac HOL_cs,
       
    60 	  stream_case_tac "x" 1,
       
    61 	   safe_tac (HOL_cs addSDs stream.inverts 
       
    62 			    addSIs [minimal, monofun_cfun, monofun_cfun_arg]),
       
    63 	fast_tac HOL_cs 1]);
       
    64 
       
    65 qed_goal "stream_inject_eq" thy
       
    66  "[| a ~= UU; b ~= UU |] ==> (a && s = b && t) = (a = b &  s = t)" (fn prems => [
       
    67 	cut_facts_tac prems 1,
       
    68 	safe_tac (HOL_cs addSEs stream.injects)]);	
       
    69 
       
    70 
       
    71 (* ----------------------------------------------------------------------- *)
       
    72 (* theorems about stream_when                                              *)
       
    73 (* ----------------------------------------------------------------------- *)
       
    74 
       
    75 section "stream_when";
       
    76 
       
    77 qed_goal "stream_when_strictf" thy "stream_when`UU`s=UU" (fn _ => [
       
    78 	stream_case_tac "s" 1,
       
    79 	ALLGOALS(asm_simp_tac (HOL_ss addsimps strict_fapp1::stream.when_rews))
       
    80 	]);
       
    81 	
       
    82 
       
    83 (* ----------------------------------------------------------------------- *)
       
    84 (* theorems about ft and rt                                                *)
       
    85 (* ----------------------------------------------------------------------- *)
       
    86 
       
    87 section "ft & rt";
       
    88 
       
    89 (*
       
    90 qed_goal "stream_ft_lemma1" thy "ft`s=UU --> s=UU" (fn prems => [
       
    91 	stream_case_tac "s" 1,
       
    92 	REPEAT (asm_simp_tac (HOLCF_ss addsimps stream.rews) 1)]);
       
    93 *)
       
    94 
       
    95 qed_goal "ft_defin" thy "s~=UU ==> ft`s~=UU" (fn prems => [
       
    96 	cut_facts_tac prems 1,
       
    97 	stream_case_tac "s" 1,
       
    98 	fast_tac HOL_cs 1,
       
    99 	asm_simp_tac (HOLCF_ss addsimps stream.rews) 1]);
       
   100 
       
   101 qed_goal "rt_strict_rev" thy "rt`s~=UU ==> s~=UU" (fn prems => [
       
   102 	cut_facts_tac prems 1,
       
   103 	etac contrapos 1,
       
   104 	asm_simp_tac (HOLCF_ss addsimps stream.sel_rews) 1]);
       
   105 
       
   106 qed_goal "surjectiv_scons" thy "(ft`s)&&(rt`s)=s"
       
   107  (fn prems =>
       
   108 	[
       
   109 	stream_case_tac "s" 1,
       
   110 	REPEAT (asm_simp_tac (HOLCF_ss addsimps stream.rews) 1)
       
   111 	]);
       
   112 
       
   113 qed_goal_spec_mp "monofun_rt_mult" thy 
       
   114 "!x s. x << s --> iterate i rt x << iterate i rt s" (fn _ => [
       
   115 	nat_ind_tac "i" 1,
       
   116 	simp_tac (HOLCF_ss addsimps stream.take_rews) 1,
       
   117 	strip_tac 1,
       
   118 	stream_case_tac "x" 1,
       
   119 	rtac (minimal RS (monofun_iterate2 RS monofunE RS spec RS spec RS mp))1,
       
   120 	dtac stream_prefix 1,
       
   121 	 safe_tac HOL_cs,
       
   122 	asm_simp_tac (HOL_ss addsimps iterate_Suc2::stream.rews) 1]);
       
   123 			
       
   124 
       
   125 (* ----------------------------------------------------------------------- *)
       
   126 (* theorems about stream_take                                              *)
       
   127 (* ----------------------------------------------------------------------- *)
       
   128 
       
   129 section "stream_take";
       
   130 
       
   131 qed_goal "stream_reach2" thy  "(LUB i. stream_take i`s) = s"
       
   132  (fn prems =>
       
   133 	[
       
   134 	(res_inst_tac [("t","s")] (stream.reach RS subst) 1),
       
   135 	(stac fix_def2 1),
       
   136 	(rewrite_goals_tac [stream.take_def]),
       
   137 	(stac contlub_cfun_fun 1),
       
   138 	(rtac is_chain_iterate 1),
       
   139 	(rtac refl 1)
       
   140 	]);
       
   141 
       
   142 qed_goal "chain_stream_take" thy "is_chain (%i.stream_take i`s)" (fn _ => [
       
   143 	rtac is_chainI 1,
       
   144 	subgoal_tac "!i s. stream_take i`s << stream_take (Suc i)`s" 1,
       
   145 	fast_tac HOL_cs 1,
       
   146 	rtac allI 1,
       
   147 	nat_ind_tac "i" 1,
       
   148 	 simp_tac (HOLCF_ss addsimps stream.take_rews) 1,
       
   149 	rtac allI 1,
       
   150 	stream_case_tac "s" 1,
       
   151 	 simp_tac (HOLCF_ss addsimps stream.take_rews) 1,
       
   152 	asm_simp_tac (HOLCF_ss addsimps monofun_cfun_arg::stream.take_rews) 1]);
       
   153 
       
   154 qed_goalw "stream_take_more" thy [stream.take_def] 
       
   155 	"stream_take n`x = x ==> stream_take (Suc n)`x = x" (fn prems => [
       
   156 		cut_facts_tac prems 1,
       
   157 		rtac antisym_less 1,
       
   158 		rtac (stream.reach RS subst) 1, (* 1*back(); *)
       
   159 		rtac monofun_cfun_fun 1,
       
   160 		stac fix_def2 1,
       
   161 		rtac is_ub_thelub 1,
       
   162 		rtac is_chain_iterate 1,
       
   163 		etac subst 1, (* 2*back(); *)
       
   164 		rtac monofun_cfun_fun 1,
       
   165 		rtac (rewrite_rule [is_chain] is_chain_iterate RS spec) 1]);
       
   166 
       
   167 (*
       
   168 val stream_take_lemma2 = prove_goal thy 
       
   169  "! s2. stream_take n`s2 = s2 --> stream_take (Suc n)`s2=s2" (fn prems => [
       
   170 	(nat_ind_tac "n" 1),
       
   171 	(simp_tac (!simpset addsimps stream_rews) 1),
       
   172 	(strip_tac 1),
       
   173 	(hyp_subst_tac  1),
       
   174 	(simp_tac (!simpset addsimps stream_rews) 1),
       
   175 	(rtac allI 1),
       
   176 	(res_inst_tac [("s","s2")] streamE 1),
       
   177 	(asm_simp_tac (!simpset addsimps stream_rews) 1),
       
   178 	(asm_simp_tac (!simpset addsimps stream_rews) 1),
       
   179 	(strip_tac 1 ),
       
   180 	(subgoal_tac "stream_take n1`xs = xs" 1),
       
   181 	(rtac ((hd stream_inject) RS conjunct2) 2),
       
   182 	(atac 4),
       
   183 	(atac 2),
       
   184 	(atac 2),
       
   185 	(rtac cfun_arg_cong 1),
       
   186 	(fast_tac HOL_cs 1)
       
   187 	]);
       
   188 *)
       
   189 
       
   190 val stream_take_lemma3 = prove_goal thy 
       
   191  "!x xs.x~=UU --> stream_take n`(x && xs) = x && xs --> stream_take n`xs=xs"
       
   192  (fn prems => [
       
   193 	(nat_ind_tac "n" 1),
       
   194 	(asm_simp_tac (HOL_ss addsimps stream.take_rews) 1),
       
   195 	(strip_tac 1),
       
   196 	(res_inst_tac [("P","x && xs=UU")] notE 1),
       
   197 	(eresolve_tac stream.con_rews 1),
       
   198 	(etac sym 1),
       
   199 	(strip_tac 1),
       
   200 	(rtac stream_take_more 1),
       
   201 	(res_inst_tac [("a1","x")] ((hd stream.injects) RS conjunct2) 1),
       
   202 	(etac (hd(tl(tl(stream.take_rews))) RS subst) 1),
       
   203 	(atac 1),
       
   204 	(atac 1)]) RS spec RS spec RS mp RS mp;
       
   205 
       
   206 val stream_take_lemma4 = prove_goal thy 
       
   207  "!x xs. stream_take n`xs=xs --> stream_take (Suc n)`(x && xs) = x && xs"
       
   208  (fn _ => [
       
   209 	(nat_ind_tac "n" 1),
       
   210 	(simp_tac (HOL_ss addsimps stream.take_rews) 1),
       
   211 	(simp_tac (HOL_ss addsimps stream.take_rews) 1)
       
   212 	]) RS spec RS spec RS mp;
       
   213 
       
   214 
       
   215 (* ------------------------------------------------------------------------- *)
       
   216 (* special induction rules                                                   *)
       
   217 (* ------------------------------------------------------------------------- *)
       
   218 
       
   219 section "induction";
       
   220 
       
   221 qed_goalw "stream_finite_ind" thy [stream.finite_def] 
       
   222  "[| stream_finite x; P UU; !!a s. [| a ~= UU; P s |] ==> P (a && s) |] ==> P x" 
       
   223  (fn prems => [
       
   224 	(cut_facts_tac prems 1),
       
   225 	(etac exE 1),
       
   226 	(etac subst 1),
       
   227 	(rtac stream.finite_ind 1),
       
   228 	(atac 1),
       
   229 	(eresolve_tac prems 1),
       
   230 	(atac 1)]);
       
   231 
       
   232 qed_goal "stream_finite_ind2" thy
       
   233 "[| P UU;\
       
   234 \   !! x    .    x ~= UU                  ==> P (x      && UU); \
       
   235 \   !! y z s. [| y ~= UU; z ~= UU; P s |] ==> P (y && z && s )  \
       
   236 \   |] ==> !s. P (stream_take n`s)" (fn prems => [
       
   237 	res_inst_tac [("n","n")] nat_induct2 1,
       
   238 	  asm_simp_tac (HOL_ss addsimps (hd prems)::stream.take_rews) 1,
       
   239 	 rtac allI 1,
       
   240 	 stream_case_tac "s" 1,
       
   241 	  asm_simp_tac (HOL_ss addsimps (hd prems)::stream.take_rews) 1,
       
   242 	 asm_simp_tac (HOL_ss addsimps stream.take_rews addsimps prems) 1,
       
   243 	rtac allI 1,
       
   244 	stream_case_tac "s" 1,
       
   245 	 asm_simp_tac (HOL_ss addsimps (hd prems)::stream.take_rews) 1,
       
   246 	res_inst_tac [("x","sa")] stream.cases 1,
       
   247 	 asm_simp_tac (HOL_ss addsimps stream.take_rews addsimps prems) 1,
       
   248 	asm_simp_tac (HOL_ss addsimps stream.take_rews addsimps prems) 1]);
       
   249 
       
   250 
       
   251 qed_goal "stream_ind2" thy
       
   252 "[| adm P; P UU; !!a. a ~= UU ==> P (a && UU); \
       
   253 \   !!a b s. [| a ~= UU; b ~= UU; P s |] ==> P (a && b && s)\
       
   254 \ |] ==> P x" (fn prems => [
       
   255 	rtac (stream.reach RS subst) 1,
       
   256 	rtac (adm_impl_admw RS wfix_ind) 1,
       
   257 	rtac adm_subst 1,
       
   258 	cont_tacR 1,
       
   259 	resolve_tac prems 1,
       
   260 	rtac allI 1,
       
   261 	rtac (rewrite_rule [stream.take_def] stream_finite_ind2 RS spec) 1,
       
   262 	resolve_tac prems 1,
       
   263 	eresolve_tac prems 1,
       
   264 	eresolve_tac prems 1, atac 1, atac 1]);
       
   265 
       
   266 
       
   267 (* ----------------------------------------------------------------------- *)
       
   268 (* simplify use of coinduction                                             *)
       
   269 (* ----------------------------------------------------------------------- *)
       
   270 
       
   271 section "coinduction";
       
   272 
       
   273 qed_goalw "stream_coind_lemma2" thy [stream.bisim_def]
       
   274 "!s1 s2. R s1 s2 --> ft`s1 = ft`s2 &  R (rt`s1) (rt`s2) ==> stream_bisim R"
       
   275  (fn prems =>
       
   276 	[
       
   277 	(cut_facts_tac prems 1),
       
   278 	(strip_tac 1),
       
   279 	(etac allE 1),
       
   280 	(etac allE 1),
       
   281 	(dtac mp 1),
       
   282 	(atac 1),
       
   283 	(etac conjE 1),
       
   284 	(case_tac "x = UU & x' = UU" 1),
       
   285 	(rtac disjI1 1),
       
   286 	(fast_tac HOL_cs 1),
       
   287 	(rtac disjI2 1),
       
   288 	(rtac disjE 1),
       
   289 	(etac (de_Morgan_conj RS subst) 1),
       
   290 	(res_inst_tac [("x","ft`x")] exI 1),
       
   291 	(res_inst_tac [("x","rt`x")] exI 1),
       
   292 	(res_inst_tac [("x","rt`x'")] exI 1),
       
   293 	(rtac conjI 1),
       
   294 	(etac ft_defin 1),
       
   295 	(asm_simp_tac (HOLCF_ss addsimps stream.rews addsimps [surjectiv_scons]) 1),
       
   296 	(eres_inst_tac [("s","ft`x"),("t","ft`x'")] subst 1),
       
   297 	(simp_tac (HOLCF_ss addsimps stream.rews addsimps [surjectiv_scons]) 1),
       
   298 	(res_inst_tac [("x","ft`x'")] exI 1),
       
   299 	(res_inst_tac [("x","rt`x")] exI 1),
       
   300 	(res_inst_tac [("x","rt`x'")] exI 1),
       
   301 	(rtac conjI 1),
       
   302 	(etac ft_defin 1),
       
   303 	(asm_simp_tac (HOLCF_ss addsimps stream.rews addsimps [surjectiv_scons]) 1),
       
   304 	(res_inst_tac [("s","ft`x"),("t","ft`x'")] ssubst 1),
       
   305 	(etac sym 1),
       
   306 	(simp_tac (HOLCF_ss addsimps stream.rews addsimps [surjectiv_scons]) 1)
       
   307 	]);
       
   308 
       
   309 (* ----------------------------------------------------------------------- *)
       
   310 (* theorems about stream_finite                                            *)
       
   311 (* ----------------------------------------------------------------------- *)
       
   312 
       
   313 section "stream_finite";
       
   314 
       
   315 qed_goalw "stream_finite_UU" thy [stream.finite_def] "stream_finite UU" 
       
   316 	(fn prems => [
       
   317 	(rtac exI 1),
       
   318 	(simp_tac (HOLCF_ss addsimps stream.rews) 1)]);
       
   319 
       
   320 qed_goal "stream_finite_UU_rev" thy  "~  stream_finite s ==> s ~= UU"  (fn prems =>
       
   321 	[
       
   322 	(cut_facts_tac prems 1),
       
   323 	(etac contrapos 1),
       
   324 	(hyp_subst_tac  1),
       
   325 	(rtac stream_finite_UU 1)
       
   326 	]);
       
   327 
       
   328 qed_goalw "stream_finite_lemma1" thy [stream.finite_def]
       
   329  "stream_finite xs ==> stream_finite (x && xs)" (fn prems => [
       
   330 	(cut_facts_tac prems 1),
       
   331 	(etac exE 1),
       
   332 	(rtac exI 1),
       
   333 	(etac stream_take_lemma4 1)
       
   334 	]);
       
   335 
       
   336 qed_goalw "stream_finite_lemma2" thy [stream.finite_def]
       
   337  "[| x ~= UU; stream_finite (x && xs) |] ==> stream_finite xs" (fn prems =>
       
   338 	[
       
   339 	(cut_facts_tac prems 1),
       
   340 	(etac exE 1),
       
   341 	(rtac exI 1),
       
   342 	(etac stream_take_lemma3 1),
       
   343 	(atac 1)
       
   344 	]);
       
   345 
       
   346 qed_goal "stream_finite_rt_eq" thy "stream_finite (rt`s) = stream_finite s"
       
   347 	(fn _ => [
       
   348 	stream_case_tac "s" 1,
       
   349 	 simp_tac (HOL_ss addsimps stream_finite_UU::stream.sel_rews) 1,
       
   350 	asm_simp_tac (HOL_ss addsimps stream.sel_rews) 1,
       
   351 	fast_tac (HOL_cs addIs [stream_finite_lemma1] 
       
   352 			 addDs [stream_finite_lemma2]) 1]);
       
   353 
       
   354 qed_goal_spec_mp "stream_finite_less" thy 
       
   355  "stream_finite s ==> !t. t<<s --> stream_finite t" (fn prems => [
       
   356 	cut_facts_tac prems 1,
       
   357 	eres_inst_tac [("x","s")] stream_finite_ind 1,
       
   358 	 strip_tac 1, dtac UU_I 1,
       
   359 	 asm_simp_tac (HOLCF_ss addsimps [stream_finite_UU]) 1,
       
   360 	strip_tac 1,
       
   361 	asm_full_simp_tac (HOL_ss addsimps [stream_prefix']) 1,
       
   362 	fast_tac (HOL_cs addSIs [stream_finite_UU, stream_finite_lemma1]) 1]);
       
   363 
       
   364 qed_goal "adm_not_stream_finite" thy "adm (%x. ~  stream_finite x)" (fn _ => [
       
   365 	rtac admI 1,
       
   366 	dtac spec 1,
       
   367 	etac contrapos 1,
       
   368 	dtac stream_finite_less 1,
       
   369 	 etac is_ub_thelub 1,
       
   370 	atac 1]);