src/HOL/Old_Number_Theory/Chinese.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
equal deleted inserted replaced
64281:bfc2e92d9b4c 64282:261d42f0bfac
     1 (*  Title:      HOL/Old_Number_Theory/Chinese.thy
       
     2     Author:     Thomas M. Rasmussen
       
     3     Copyright   2000  University of Cambridge
       
     4 *)
       
     5 
       
     6 section \<open>The Chinese Remainder Theorem\<close>
       
     7 
       
     8 theory Chinese 
       
     9 imports IntPrimes
       
    10 begin
       
    11 
       
    12 text \<open>
       
    13   The Chinese Remainder Theorem for an arbitrary finite number of
       
    14   equations.  (The one-equation case is included in theory \<open>IntPrimes\<close>.  Uses functions for indexing.\footnote{Maybe @{term
       
    15   funprod} and @{term funsum} should be based on general @{term fold}
       
    16   on indices?}
       
    17 \<close>
       
    18 
       
    19 
       
    20 subsection \<open>Definitions\<close>
       
    21 
       
    22 primrec funprod :: "(nat => int) => nat => nat => int"
       
    23 where
       
    24   "funprod f i 0 = f i"
       
    25 | "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
       
    26 
       
    27 primrec funsum :: "(nat => int) => nat => nat => int"
       
    28 where
       
    29   "funsum f i 0 = f i"
       
    30 | "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
       
    31 
       
    32 definition
       
    33   m_cond :: "nat => (nat => int) => bool" where
       
    34   "m_cond n mf =
       
    35     ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
       
    36       (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
       
    37 
       
    38 definition
       
    39   km_cond :: "nat => (nat => int) => (nat => int) => bool" where
       
    40   "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
       
    41 
       
    42 definition
       
    43   lincong_sol ::
       
    44     "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
       
    45   "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
       
    46 
       
    47 definition
       
    48   mhf :: "(nat => int) => nat => nat => int" where
       
    49   "mhf mf n i =
       
    50     (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
       
    51      else if i = n then funprod mf 0 (n - Suc 0)
       
    52      else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
       
    53 
       
    54 definition
       
    55   xilin_sol ::
       
    56     "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
       
    57   "xilin_sol i n kf bf mf =
       
    58     (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
       
    59         (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
       
    60      else 0)"
       
    61 
       
    62 definition
       
    63   x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
       
    64   "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
       
    65 
       
    66 
       
    67 text \<open>\medskip @{term funprod} and @{term funsum}\<close>
       
    68 
       
    69 lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
       
    70 by (induct n) auto
       
    71 
       
    72 lemma funprod_zgcd [rule_format (no_asm)]:
       
    73   "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
       
    74     zgcd (funprod mf k l) (mf m) = 1"
       
    75   apply (induct l)
       
    76    apply simp_all
       
    77   apply (rule impI)+
       
    78   apply (subst zgcd_zmult_cancel)
       
    79   apply auto
       
    80   done
       
    81 
       
    82 lemma funprod_zdvd [rule_format]:
       
    83     "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
       
    84   apply (induct l)
       
    85    apply auto
       
    86   apply (subgoal_tac "i = Suc (k + l)")
       
    87    apply (simp_all (no_asm_simp))
       
    88   done
       
    89 
       
    90 lemma funsum_mod:
       
    91     "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
       
    92   apply (induct l)
       
    93    apply auto
       
    94   apply (rule trans)
       
    95    apply (rule mod_add_eq)
       
    96   apply simp
       
    97   apply (rule mod_add_right_eq [symmetric])
       
    98   done
       
    99 
       
   100 lemma funsum_zero [rule_format (no_asm)]:
       
   101     "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
       
   102   apply (induct l)
       
   103    apply auto
       
   104   done
       
   105 
       
   106 lemma funsum_oneelem [rule_format (no_asm)]:
       
   107   "k \<le> j --> j \<le> k + l -->
       
   108     (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
       
   109     funsum f k l = f j"
       
   110   apply (induct l)
       
   111    prefer 2
       
   112    apply clarify
       
   113    defer
       
   114    apply clarify
       
   115    apply (subgoal_tac "k = j")
       
   116     apply (simp_all (no_asm_simp))
       
   117   apply (case_tac "Suc (k + l) = j")
       
   118    apply (subgoal_tac "funsum f k l = 0")
       
   119     apply (rule_tac [2] funsum_zero)
       
   120     apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
       
   121      apply (subgoal_tac [3] "j \<le> k + l")
       
   122       prefer 4
       
   123       apply arith
       
   124      apply auto
       
   125   done
       
   126 
       
   127 
       
   128 subsection \<open>Chinese: uniqueness\<close>
       
   129 
       
   130 lemma zcong_funprod_aux:
       
   131   "m_cond n mf ==> km_cond n kf mf
       
   132     ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
       
   133     ==> [x = y] (mod mf n)"
       
   134   apply (unfold m_cond_def km_cond_def lincong_sol_def)
       
   135   apply (rule iffD1)
       
   136    apply (rule_tac k = "kf n" in zcong_cancel2)
       
   137     apply (rule_tac [3] b = "bf n" in zcong_trans)
       
   138      prefer 4
       
   139      apply (subst zcong_sym)
       
   140      defer
       
   141      apply (rule order_less_imp_le)
       
   142      apply simp_all
       
   143   done
       
   144 
       
   145 lemma zcong_funprod [rule_format]:
       
   146   "m_cond n mf --> km_cond n kf mf -->
       
   147     lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
       
   148     [x = y] (mod funprod mf 0 n)"
       
   149   apply (induct n)
       
   150    apply (simp_all (no_asm))
       
   151    apply (blast intro: zcong_funprod_aux)
       
   152   apply (rule impI)+
       
   153   apply (rule zcong_zgcd_zmult_zmod)
       
   154     apply (blast intro: zcong_funprod_aux)
       
   155     prefer 2
       
   156     apply (subst zgcd_commute)
       
   157     apply (rule funprod_zgcd)
       
   158    apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
       
   159   done
       
   160 
       
   161 
       
   162 subsection \<open>Chinese: existence\<close>
       
   163 
       
   164 lemma unique_xi_sol:
       
   165   "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
       
   166     ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
       
   167   apply (rule zcong_lineq_unique)
       
   168    apply (tactic \<open>stac @{context} @{thm zgcd_zmult_cancel} 2\<close>)
       
   169     apply (unfold m_cond_def km_cond_def mhf_def)
       
   170     apply (simp_all (no_asm_simp))
       
   171   apply safe
       
   172     apply (tactic \<open>stac @{context} @{thm zgcd_zmult_cancel} 3\<close>)
       
   173      apply (rule_tac [!] funprod_zgcd)
       
   174      apply safe
       
   175      apply simp_all
       
   176    apply (subgoal_tac "ia<n")
       
   177     prefer 2
       
   178     apply arith
       
   179    apply (case_tac [2] i)
       
   180     apply simp_all
       
   181   done
       
   182 
       
   183 lemma x_sol_lin_aux:
       
   184     "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
       
   185   apply (unfold mhf_def)
       
   186   apply (case_tac "i = 0")
       
   187    apply (case_tac [2] "i = n")
       
   188     apply (simp_all (no_asm_simp))
       
   189     apply (case_tac [3] "j < i")
       
   190      apply (rule_tac [3] dvd_mult2)
       
   191      apply (rule_tac [4] dvd_mult)
       
   192      apply (rule_tac [!] funprod_zdvd)
       
   193      apply arith
       
   194      apply arith
       
   195      apply arith
       
   196      apply arith
       
   197      apply arith
       
   198      apply arith
       
   199      apply arith
       
   200      apply arith
       
   201   done
       
   202 
       
   203 lemma x_sol_lin:
       
   204   "0 < n ==> i \<le> n
       
   205     ==> x_sol n kf bf mf mod mf i =
       
   206       xilin_sol i n kf bf mf * mhf mf n i mod mf i"
       
   207   apply (unfold x_sol_def)
       
   208   apply (subst funsum_mod)
       
   209   apply (subst funsum_oneelem)
       
   210      apply auto
       
   211   apply (subst dvd_eq_mod_eq_0 [symmetric])
       
   212   apply (rule dvd_mult)
       
   213   apply (rule x_sol_lin_aux)
       
   214   apply auto
       
   215   done
       
   216 
       
   217 
       
   218 subsection \<open>Chinese\<close>
       
   219 
       
   220 lemma chinese_remainder:
       
   221   "0 < n ==> m_cond n mf ==> km_cond n kf mf
       
   222     ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
       
   223   apply safe
       
   224    apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
       
   225        apply (rule_tac [6] zcong_funprod)
       
   226           apply auto
       
   227   apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
       
   228   apply (unfold lincong_sol_def)
       
   229   apply safe
       
   230     apply (tactic \<open>stac @{context} @{thm zcong_zmod} 3\<close>)
       
   231     apply (tactic \<open>stac @{context} @{thm mod_mult_eq} 3\<close>)
       
   232     apply (tactic \<open>stac @{context} @{thm mod_mod_cancel} 3\<close>)
       
   233       apply (tactic \<open>stac @{context} @{thm x_sol_lin} 4\<close>)
       
   234         apply (tactic \<open>stac @{context} (@{thm mod_mult_eq} RS sym) 6\<close>)
       
   235         apply (tactic \<open>stac @{context} (@{thm zcong_zmod} RS sym) 6\<close>)
       
   236         apply (subgoal_tac [6]
       
   237           "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
       
   238           \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
       
   239          prefer 6
       
   240          apply (simp add: ac_simps)
       
   241         apply (unfold xilin_sol_def)
       
   242         apply (tactic \<open>asm_simp_tac @{context} 6\<close>)
       
   243         apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
       
   244         apply (rule_tac [6] unique_xi_sol)
       
   245            apply (rule_tac [3] funprod_zdvd)
       
   246             apply (unfold m_cond_def)
       
   247             apply (rule funprod_pos [THEN pos_mod_sign])
       
   248             apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
       
   249             apply auto
       
   250   done
       
   251 
       
   252 end