src/HOL/Old_Number_Theory/Factorization.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
equal deleted inserted replaced
64281:bfc2e92d9b4c 64282:261d42f0bfac
     1 (*  Title:      HOL/Old_Number_Theory/Factorization.thy
       
     2     Author:     Thomas Marthedal Rasmussen
       
     3     Copyright   2000  University of Cambridge
       
     4 *)
       
     5 
       
     6 section \<open>Fundamental Theorem of Arithmetic (unique factorization into primes)\<close>
       
     7 
       
     8 theory Factorization
       
     9 imports Primes "~~/src/HOL/Library/Permutation"
       
    10 begin
       
    11 
       
    12 
       
    13 subsection \<open>Definitions\<close>
       
    14 
       
    15 definition primel :: "nat list => bool"
       
    16   where "primel xs = (\<forall>p \<in> set xs. prime p)"
       
    17 
       
    18 primrec nondec :: "nat list => bool"
       
    19 where
       
    20   "nondec [] = True"
       
    21 | "nondec (x # xs) = (case xs of [] => True | y # ys => x \<le> y \<and> nondec xs)"
       
    22 
       
    23 primrec prod :: "nat list => nat"
       
    24 where
       
    25   "prod [] = Suc 0"
       
    26 | "prod (x # xs) = x * prod xs"
       
    27 
       
    28 primrec oinsert :: "nat => nat list => nat list"
       
    29 where
       
    30   "oinsert x [] = [x]"
       
    31 | "oinsert x (y # ys) = (if x \<le> y then x # y # ys else y # oinsert x ys)"
       
    32 
       
    33 primrec sort :: "nat list => nat list"
       
    34 where
       
    35   "sort [] = []"
       
    36 | "sort (x # xs) = oinsert x (sort xs)"
       
    37 
       
    38 
       
    39 subsection \<open>Arithmetic\<close>
       
    40 
       
    41 lemma one_less_m: "(m::nat) \<noteq> m * k ==> m \<noteq> Suc 0 ==> Suc 0 < m"
       
    42   apply (cases m)
       
    43    apply auto
       
    44   done
       
    45 
       
    46 lemma one_less_k: "(m::nat) \<noteq> m * k ==> Suc 0 < m * k ==> Suc 0 < k"
       
    47   apply (cases k)
       
    48    apply auto
       
    49   done
       
    50 
       
    51 lemma mult_left_cancel: "(0::nat) < k ==> k * n = k * m ==> n = m"
       
    52   apply auto
       
    53   done
       
    54 
       
    55 lemma mn_eq_m_one: "(0::nat) < m ==> m * n = m ==> n = Suc 0"
       
    56   apply (cases n)
       
    57    apply auto
       
    58   done
       
    59 
       
    60 lemma prod_mn_less_k:
       
    61     "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k"
       
    62   apply (induct m)
       
    63    apply auto
       
    64   done
       
    65 
       
    66 
       
    67 subsection \<open>Prime list and product\<close>
       
    68 
       
    69 lemma prod_append: "prod (xs @ ys) = prod xs * prod ys"
       
    70   apply (induct xs)
       
    71    apply (simp_all add: mult.assoc)
       
    72   done
       
    73 
       
    74 lemma prod_xy_prod:
       
    75     "prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys"
       
    76   apply auto
       
    77   done
       
    78 
       
    79 lemma primel_append: "primel (xs @ ys) = (primel xs \<and> primel ys)"
       
    80   apply (unfold primel_def)
       
    81   apply auto
       
    82   done
       
    83 
       
    84 lemma prime_primel: "prime n ==> primel [n] \<and> prod [n] = n"
       
    85   apply (unfold primel_def)
       
    86   apply auto
       
    87   done
       
    88 
       
    89 lemma prime_nd_one: "prime p ==> \<not> p dvd Suc 0"
       
    90   apply (unfold prime_def dvd_def)
       
    91   apply auto
       
    92   done
       
    93 
       
    94 lemma hd_dvd_prod: "prod (x # xs) = prod ys ==> x dvd (prod ys)" 
       
    95   by (metis dvd_mult_left dvd_refl prod.simps(2))
       
    96 
       
    97 lemma primel_tl: "primel (x # xs) ==> primel xs"
       
    98   apply (unfold primel_def)
       
    99   apply auto
       
   100   done
       
   101 
       
   102 lemma primel_hd_tl: "(primel (x # xs)) = (prime x \<and> primel xs)"
       
   103   apply (unfold primel_def)
       
   104   apply auto
       
   105   done
       
   106 
       
   107 lemma primes_eq: "prime p ==> prime q ==> p dvd q ==> p = q"
       
   108   apply (unfold prime_def)
       
   109   apply auto
       
   110   done
       
   111 
       
   112 lemma primel_one_empty: "primel xs ==> prod xs = Suc 0 ==> xs = []"
       
   113   apply (cases xs)
       
   114    apply (simp_all add: primel_def prime_def)
       
   115   done
       
   116 
       
   117 lemma prime_g_one: "prime p ==> Suc 0 < p"
       
   118   apply (unfold prime_def)
       
   119   apply auto
       
   120   done
       
   121 
       
   122 lemma prime_g_zero: "prime p ==> 0 < p"
       
   123   apply (unfold prime_def)
       
   124   apply auto
       
   125   done
       
   126 
       
   127 lemma primel_nempty_g_one:
       
   128     "primel xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> Suc 0 < prod xs"
       
   129   apply (induct xs)
       
   130    apply simp
       
   131   apply (fastforce simp: primel_def prime_def elim: one_less_mult)
       
   132   done
       
   133 
       
   134 lemma primel_prod_gz: "primel xs ==> 0 < prod xs"
       
   135   apply (induct xs)
       
   136    apply (auto simp: primel_def prime_def)
       
   137   done
       
   138 
       
   139 
       
   140 subsection \<open>Sorting\<close>
       
   141 
       
   142 lemma nondec_oinsert: "nondec xs \<Longrightarrow> nondec (oinsert x xs)"
       
   143   apply (induct xs)
       
   144    apply simp
       
   145    apply (case_tac xs)
       
   146     apply (simp_all cong del: list.case_cong_weak)
       
   147   done
       
   148 
       
   149 lemma nondec_sort: "nondec (sort xs)"
       
   150   apply (induct xs)
       
   151    apply simp_all
       
   152   apply (erule nondec_oinsert)
       
   153   done
       
   154 
       
   155 lemma x_less_y_oinsert: "x \<le> y ==> l = y # ys ==> x # l = oinsert x l"
       
   156   apply simp_all
       
   157   done
       
   158 
       
   159 lemma nondec_sort_eq [rule_format]: "nondec xs \<longrightarrow> xs = sort xs"
       
   160   apply (induct xs)
       
   161    apply safe
       
   162     apply simp_all
       
   163    apply (case_tac xs)
       
   164     apply simp_all
       
   165   apply (case_tac xs)
       
   166    apply simp
       
   167   apply (rule_tac y = aa and ys = list in x_less_y_oinsert)
       
   168    apply simp_all
       
   169   done
       
   170 
       
   171 lemma oinsert_x_y: "oinsert x (oinsert y l) = oinsert y (oinsert x l)"
       
   172   apply (induct l)
       
   173   apply auto
       
   174   done
       
   175 
       
   176 
       
   177 subsection \<open>Permutation\<close>
       
   178 
       
   179 lemma perm_primel [rule_format]: "xs <~~> ys ==> primel xs --> primel ys"
       
   180   apply (unfold primel_def)
       
   181   apply (induct set: perm)
       
   182      apply simp
       
   183     apply simp
       
   184    apply (simp (no_asm))
       
   185    apply blast
       
   186   apply blast
       
   187   done
       
   188 
       
   189 lemma perm_prod: "xs <~~> ys ==> prod xs = prod ys"
       
   190   apply (induct set: perm)
       
   191      apply (simp_all add: ac_simps)
       
   192   done
       
   193 
       
   194 lemma perm_subst_oinsert: "xs <~~> ys ==> oinsert a xs <~~> oinsert a ys"
       
   195   apply (induct set: perm)
       
   196      apply auto
       
   197   done
       
   198 
       
   199 lemma perm_oinsert: "x # xs <~~> oinsert x xs"
       
   200   apply (induct xs)
       
   201    apply auto
       
   202   done
       
   203 
       
   204 lemma perm_sort: "xs <~~> sort xs"
       
   205   apply (induct xs)
       
   206   apply (auto intro: perm_oinsert elim: perm_subst_oinsert)
       
   207   done
       
   208 
       
   209 lemma perm_sort_eq: "xs <~~> ys ==> sort xs = sort ys"
       
   210   apply (induct set: perm)
       
   211      apply (simp_all add: oinsert_x_y)
       
   212   done
       
   213 
       
   214 
       
   215 subsection \<open>Existence\<close>
       
   216 
       
   217 lemma ex_nondec_lemma:
       
   218     "primel xs ==> \<exists>ys. primel ys \<and> nondec ys \<and> prod ys = prod xs"
       
   219   apply (blast intro: nondec_sort perm_prod perm_primel perm_sort perm_sym)
       
   220   done
       
   221 
       
   222 lemma not_prime_ex_mk:
       
   223   "Suc 0 < n \<and> \<not> prime n \<Longrightarrow>
       
   224     \<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k"
       
   225   apply (unfold prime_def dvd_def)
       
   226   apply (auto intro: n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k)
       
   227   using n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k
       
   228   apply (metis Suc_lessD Suc_lessI mult.commute)
       
   229   done
       
   230 
       
   231 lemma split_primel:
       
   232   "primel xs \<Longrightarrow> primel ys \<Longrightarrow> \<exists>l. primel l \<and> prod l = prod xs * prod ys"
       
   233   apply (rule exI)
       
   234   apply safe
       
   235    apply (rule_tac [2] prod_append)
       
   236   apply (simp add: primel_append)
       
   237   done
       
   238 
       
   239 lemma factor_exists [rule_format]: "Suc 0 < n --> (\<exists>l. primel l \<and> prod l = n)"
       
   240   apply (induct n rule: nat_less_induct)
       
   241   apply (rule impI)
       
   242   apply (case_tac "prime n")
       
   243    apply (rule exI)
       
   244    apply (erule prime_primel)
       
   245   apply (cut_tac n = n in not_prime_ex_mk)
       
   246    apply (auto intro!: split_primel)
       
   247   done
       
   248 
       
   249 lemma nondec_factor_exists: "Suc 0 < n ==> \<exists>l. primel l \<and> nondec l \<and> prod l = n"
       
   250   apply (erule factor_exists [THEN exE])
       
   251   apply (blast intro!: ex_nondec_lemma)
       
   252   done
       
   253 
       
   254 
       
   255 subsection \<open>Uniqueness\<close>
       
   256 
       
   257 lemma prime_dvd_mult_list [rule_format]:
       
   258     "prime p ==> p dvd (prod xs) --> (\<exists>m. m:set xs \<and> p dvd m)"
       
   259   apply (induct xs)
       
   260    apply (force simp add: prime_def)
       
   261    apply (force dest: prime_dvd_mult)
       
   262   done
       
   263 
       
   264 lemma hd_xs_dvd_prod:
       
   265   "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys
       
   266     ==> \<exists>m. m \<in> set ys \<and> x dvd m"
       
   267   apply (rule prime_dvd_mult_list)
       
   268    apply (simp add: primel_hd_tl)
       
   269   apply (erule hd_dvd_prod)
       
   270   done
       
   271 
       
   272 lemma prime_dvd_eq: "primel (x # xs) ==> primel ys ==> m \<in> set ys ==> x dvd m ==> x = m"
       
   273   apply (rule primes_eq)
       
   274     apply (auto simp add: primel_def primel_hd_tl)
       
   275   done
       
   276 
       
   277 lemma hd_xs_eq_prod:
       
   278   "primel (x # xs) ==>
       
   279     primel ys ==> prod (x # xs) = prod ys ==> x \<in> set ys"
       
   280   apply (frule hd_xs_dvd_prod)
       
   281     apply auto
       
   282   apply (drule prime_dvd_eq)
       
   283      apply auto
       
   284   done
       
   285 
       
   286 lemma perm_primel_ex:
       
   287   "primel (x # xs) ==>
       
   288     primel ys ==> prod (x # xs) = prod ys ==> \<exists>l. ys <~~> (x # l)"
       
   289   apply (rule exI)
       
   290   apply (rule perm_remove)
       
   291   apply (erule hd_xs_eq_prod)
       
   292    apply simp_all
       
   293   done
       
   294 
       
   295 lemma primel_prod_less:
       
   296   "primel (x # xs) ==>
       
   297     primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys"
       
   298   by (metis less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff
       
   299     nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2))
       
   300 
       
   301 lemma prod_one_empty:
       
   302     "primel xs ==> p * prod xs = p ==> prime p ==> xs = []"
       
   303   apply (auto intro: primel_one_empty simp add: prime_def)
       
   304   done
       
   305 
       
   306 lemma uniq_ex_aux:
       
   307   "\<forall>m. m < prod ys --> (\<forall>xs ys. primel xs \<and> primel ys \<and>
       
   308       prod xs = prod ys \<and> prod xs = m --> xs <~~> ys) ==>
       
   309     primel list ==> primel x ==> prod list = prod x ==> prod x < prod ys
       
   310     ==> x <~~> list"
       
   311   apply simp
       
   312   done
       
   313 
       
   314 lemma factor_unique [rule_format]:
       
   315   "\<forall>xs ys. primel xs \<and> primel ys \<and> prod xs = prod ys \<and> prod xs = n
       
   316     --> xs <~~> ys"
       
   317   apply (induct n rule: nat_less_induct)
       
   318   apply safe
       
   319   apply (case_tac xs)
       
   320    apply (force intro: primel_one_empty)
       
   321   apply (rule perm_primel_ex [THEN exE])
       
   322      apply simp_all
       
   323   apply (rule perm.trans [THEN perm_sym])
       
   324   apply assumption
       
   325   apply (rule perm.Cons)
       
   326   apply (case_tac "x = []")
       
   327    apply (metis perm_prod perm_refl prime_primel primel_hd_tl primel_tl prod_one_empty)
       
   328   apply (metis nat_0_less_mult_iff nat_mult_eq_cancel1 perm_primel perm_prod primel_prod_gz primel_prod_less primel_tl prod.simps(2))
       
   329   done
       
   330 
       
   331 lemma perm_nondec_unique:
       
   332     "xs <~~> ys ==> nondec xs ==> nondec ys ==> xs = ys"
       
   333   by (metis nondec_sort_eq perm_sort_eq)
       
   334 
       
   335 theorem unique_prime_factorization [rule_format]:
       
   336     "\<forall>n. Suc 0 < n --> (\<exists>!l. primel l \<and> nondec l \<and> prod l = n)"
       
   337   by (metis factor_unique nondec_factor_exists perm_nondec_unique)
       
   338 
       
   339 end