src/HOL/Analysis/Abstract_Topology_2.thy
changeset 78200 264f2b69d09c
parent 78037 37894dff0111
child 78248 740b23f1138a
equal deleted inserted replaced
78198:c268def0784b 78200:264f2b69d09c
  1642 lemma real_shrink_Galois:
  1642 lemma real_shrink_Galois:
  1643   fixes x::real
  1643   fixes x::real
  1644   shows "(x / (1 + \<bar>x\<bar>) = y) \<longleftrightarrow> (\<bar>y\<bar> < 1 \<and> y / (1 - \<bar>y\<bar>) = x)"
  1644   shows "(x / (1 + \<bar>x\<bar>) = y) \<longleftrightarrow> (\<bar>y\<bar> < 1 \<and> y / (1 - \<bar>y\<bar>) = x)"
  1645   using real_grow_shrink by (fastforce simp add: distrib_left)
  1645   using real_grow_shrink by (fastforce simp add: distrib_left)
  1646 
  1646 
       
  1647 lemma real_shrink_eq:
       
  1648   fixes x y::real
       
  1649   shows "(x / (1 + \<bar>x\<bar>) = y / (1 + \<bar>y\<bar>)) \<longleftrightarrow> x = y"
       
  1650   by (metis real_shrink_Galois)
       
  1651 
  1647 lemma real_shrink_lt:
  1652 lemma real_shrink_lt:
  1648   fixes x::real
  1653   fixes x::real
  1649   shows "x / (1 + \<bar>x\<bar>) < y / (1 + \<bar>y\<bar>) \<longleftrightarrow> x < y"
  1654   shows "x / (1 + \<bar>x\<bar>) < y / (1 + \<bar>y\<bar>) \<longleftrightarrow> x < y"
  1650   using zero_less_mult_iff [of x y] by (auto simp: field_simps abs_if not_less)
  1655   using zero_less_mult_iff [of x y] by (auto simp: field_simps abs_if not_less)
  1651 
  1656