equal
deleted
inserted
replaced
1057 |
1057 |
1058 Goalw [nscderiv_def] |
1058 Goalw [nscderiv_def] |
1059 "x ~= 0 ==> NSCDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))"; |
1059 "x ~= 0 ==> NSCDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))"; |
1060 by (rtac ballI 1 THEN Asm_full_simp_tac 1 THEN Step_tac 1); |
1060 by (rtac ballI 1 THEN Asm_full_simp_tac 1 THEN Step_tac 1); |
1061 by (forward_tac [CInfinitesimal_add_not_zero] 1); |
1061 by (forward_tac [CInfinitesimal_add_not_zero] 1); |
1062 by (asm_full_simp_tac (simpset() addsimps [hcomplex_add_commute,two_eq_Suc_Suc]) 2); |
1062 by (asm_full_simp_tac (simpset() addsimps [hcomplex_add_commute,numeral_2_eq_2]) 2); |
1063 by (auto_tac (claset(), |
1063 by (auto_tac (claset(), |
1064 simpset() addsimps [starfunC_inverse_inverse,hcomplex_diff_def] |
1064 simpset() addsimps [starfunC_inverse_inverse,hcomplex_diff_def] |
1065 delsimps [hcomplex_minus_mult_eq1 RS sym, |
1065 delsimps [hcomplex_minus_mult_eq1 RS sym, |
1066 hcomplex_minus_mult_eq2 RS sym])); |
1066 hcomplex_minus_mult_eq2 RS sym])); |
1067 by (asm_simp_tac |
1067 by (asm_simp_tac |
1114 (* Derivative of quotient *) |
1114 (* Derivative of quotient *) |
1115 (*------------------------------------------------------------------------------------*) |
1115 (*------------------------------------------------------------------------------------*) |
1116 |
1116 |
1117 |
1117 |
1118 Goal "x ~= (0::complex) \\<Longrightarrow> (x * inverse(x) ^ 2) = inverse x"; |
1118 Goal "x ~= (0::complex) \\<Longrightarrow> (x * inverse(x) ^ 2) = inverse x"; |
1119 by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc])); |
1119 by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2])); |
1120 qed "lemma_complex_mult_inverse_squared"; |
1120 qed "lemma_complex_mult_inverse_squared"; |
1121 Addsimps [lemma_complex_mult_inverse_squared]; |
1121 Addsimps [lemma_complex_mult_inverse_squared]; |
1122 |
1122 |
1123 Goalw [complex_diff_def] |
1123 Goalw [complex_diff_def] |
1124 "[| CDERIV f x :> d; CDERIV g x :> e; g(x) ~= 0 |] \ |
1124 "[| CDERIV f x :> d; CDERIV g x :> e; g(x) ~= 0 |] \ |