src/HOL/Complex/CLim.ML
changeset 14323 27724f528f82
parent 14320 fb7a114826be
child 14331 8dbbb7cf3637
equal deleted inserted replaced
14322:fa78e7eb1dac 14323:27724f528f82
  1057 
  1057 
  1058 Goalw [nscderiv_def]
  1058 Goalw [nscderiv_def]
  1059      "x ~= 0 ==> NSCDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))";
  1059      "x ~= 0 ==> NSCDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))";
  1060 by (rtac ballI 1 THEN Asm_full_simp_tac 1 THEN Step_tac 1);
  1060 by (rtac ballI 1 THEN Asm_full_simp_tac 1 THEN Step_tac 1);
  1061 by (forward_tac [CInfinitesimal_add_not_zero] 1);
  1061 by (forward_tac [CInfinitesimal_add_not_zero] 1);
  1062 by (asm_full_simp_tac (simpset() addsimps [hcomplex_add_commute,two_eq_Suc_Suc]) 2); 
  1062 by (asm_full_simp_tac (simpset() addsimps [hcomplex_add_commute,numeral_2_eq_2]) 2); 
  1063 by (auto_tac (claset(),
  1063 by (auto_tac (claset(),
  1064      simpset() addsimps [starfunC_inverse_inverse,hcomplex_diff_def] 
  1064      simpset() addsimps [starfunC_inverse_inverse,hcomplex_diff_def] 
  1065                delsimps [hcomplex_minus_mult_eq1 RS sym,
  1065                delsimps [hcomplex_minus_mult_eq1 RS sym,
  1066                          hcomplex_minus_mult_eq2 RS sym]));
  1066                          hcomplex_minus_mult_eq2 RS sym]));
  1067 by (asm_simp_tac
  1067 by (asm_simp_tac
  1114 (* Derivative of quotient                                                             *)
  1114 (* Derivative of quotient                                                             *)
  1115 (*------------------------------------------------------------------------------------*)
  1115 (*------------------------------------------------------------------------------------*)
  1116 
  1116 
  1117 
  1117 
  1118 Goal "x ~= (0::complex) \\<Longrightarrow> (x * inverse(x) ^ 2) = inverse x";
  1118 Goal "x ~= (0::complex) \\<Longrightarrow> (x * inverse(x) ^ 2) = inverse x";
  1119 by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc]));
  1119 by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
  1120 qed "lemma_complex_mult_inverse_squared";
  1120 qed "lemma_complex_mult_inverse_squared";
  1121 Addsimps [lemma_complex_mult_inverse_squared];
  1121 Addsimps [lemma_complex_mult_inverse_squared];
  1122 
  1122 
  1123 Goalw [complex_diff_def] 
  1123 Goalw [complex_diff_def] 
  1124      "[| CDERIV f x :> d; CDERIV g x :> e; g(x) ~= 0 |] \
  1124      "[| CDERIV f x :> d; CDERIV g x :> e; g(x) ~= 0 |] \