src/HOL/Set.thy
changeset 39213 297cd703f1f0
parent 39198 f967a16dfcdd
child 39302 d7728f65b353
equal deleted inserted replaced
39212:3989b2b44dba 39213:297cd703f1f0
   495   apply (rule Collect_mem_eq)
   495   apply (rule Collect_mem_eq)
   496   done
   496   done
   497 
   497 
   498 lemma set_ext_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))"
   498 lemma set_ext_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))"
   499 by(auto intro:set_ext)
   499 by(auto intro:set_ext)
       
   500 
       
   501 lemmas expand_set_eq [no_atp] = set_ext_iff
   500 
   502 
   501 lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
   503 lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
   502   -- {* Anti-symmetry of the subset relation. *}
   504   -- {* Anti-symmetry of the subset relation. *}
   503   by (iprover intro: set_ext subsetD)
   505   by (iprover intro: set_ext subsetD)
   504 
   506