61 text {* |
61 text {* |
62 also provable by simp (re-orients) |
62 also provable by simp (re-orients) |
63 *}; |
63 *}; |
64 |
64 |
65 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
65 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
66 apply (erule ssubst) |
66 apply (erule ssubst) |
67 back |
67 --{* @{subgoals[display,indent=0,margin=65]} *} |
68 back |
68 back --{* @{subgoals[display,indent=0,margin=65]} *} |
69 back |
69 back --{* @{subgoals[display,indent=0,margin=65]} *} |
70 back |
70 back --{* @{subgoals[display,indent=0,margin=65]} *} |
71 apply assumption |
71 back --{* @{subgoals[display,indent=0,margin=65]} *} |
72 done |
72 apply assumption |
73 |
73 done |
74 text {* |
|
75 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline |
|
76 \isanewline |
|
77 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
78 {\isasymlbrakk}x\ {\isacharequal}\ f\ x{\isacharsemicolon}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ x\ x\isanewline |
|
79 \ \isadigit{1}{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright} |
|
80 |
|
81 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline |
|
82 \isanewline |
|
83 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
84 {\isasymlbrakk}x\ {\isacharequal}\ f\ x{\isacharsemicolon}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ x\ x\isanewline |
|
85 \ \isadigit{1}{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isasymLongrightarrow}\ P\ x\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright} |
|
86 |
|
87 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline |
|
88 \isanewline |
|
89 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
90 {\isasymlbrakk}x\ {\isacharequal}\ f\ x{\isacharsemicolon}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ x\ x\isanewline |
|
91 \ \isadigit{1}{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isacharparenleft}f\ x{\isacharparenright} |
|
92 |
|
93 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline |
|
94 \isanewline |
|
95 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
96 {\isasymlbrakk}x\ {\isacharequal}\ f\ x{\isacharsemicolon}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ x\ x\isanewline |
|
97 \ \isadigit{1}{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isasymLongrightarrow}\ P\ x\ x\ {\isacharparenleft}f\ x{\isacharparenright} |
|
98 |
|
99 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline |
|
100 \isanewline |
|
101 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
102 {\isasymlbrakk}x\ {\isacharequal}\ f\ x{\isacharsemicolon}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ x\ x\isanewline |
|
103 \ \isadigit{1}{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isacharparenleft}f\ x{\isacharparenright}\ x |
|
104 *}; |
|
105 |
74 |
106 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
75 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
107 apply (erule ssubst, assumption) |
76 apply (erule ssubst, assumption) |
108 done |
77 done |
109 |
78 |
110 text{* |
79 text{* |
111 or better still NEW |
80 or better still |
112 *} |
81 *} |
113 |
82 |
114 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
83 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
115 by (erule ssubst) |
84 by (erule ssubst) |
116 |
85 |
117 |
86 |
118 text{*NEW*} |
|
119 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
87 lemma "\<lbrakk> x = f x; P (f x) (f x) x \<rbrakk> \<Longrightarrow> P x x x" |
120 apply (erule_tac P="\<lambda>u. P u u x" in ssubst) |
88 apply (erule_tac P="\<lambda>u. P u u x" in ssubst) |
121 apply (assumption) |
89 apply (assumption) |
122 done |
90 done |
123 |
91 |
149 *}; |
117 *}; |
150 |
118 |
151 |
119 |
152 lemma "\<lbrakk>\<not>(P\<longrightarrow>Q); \<not>(R\<longrightarrow>Q)\<rbrakk> \<Longrightarrow> R" |
120 lemma "\<lbrakk>\<not>(P\<longrightarrow>Q); \<not>(R\<longrightarrow>Q)\<rbrakk> \<Longrightarrow> R" |
153 apply (erule_tac Q="R\<longrightarrow>Q" in contrapos_np) |
121 apply (erule_tac Q="R\<longrightarrow>Q" in contrapos_np) |
154 txt{* |
122 --{* @{subgoals[display,indent=0,margin=65]} *} |
155 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline |
123 apply intro |
156 \isanewline |
124 --{* @{subgoals[display,indent=0,margin=65]} *} |
157 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
158 {\isasymlbrakk}{\isasymnot}\ {\isacharparenleft}P\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isacharsemicolon}\ {\isasymnot}\ {\isacharparenleft}R\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ R\isanewline |
|
159 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isasymnot}\ {\isacharparenleft}P\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isacharsemicolon}\ {\isasymnot}\ R{\isasymrbrakk}\ {\isasymLongrightarrow}\ R\ {\isasymlongrightarrow}\ Q |
|
160 *} |
|
161 |
|
162 apply intro |
|
163 txt{* |
|
164 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{3}}\isanewline |
|
165 \isanewline |
|
166 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
167 {\isasymlbrakk}{\isasymnot}\ {\isacharparenleft}P\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isacharsemicolon}\ {\isasymnot}\ {\isacharparenleft}R\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ R\isanewline |
|
168 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isasymnot}\ {\isacharparenleft}P\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isacharsemicolon}\ {\isasymnot}\ R{\isacharsemicolon}\ R{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q |
|
169 *} |
|
170 by (erule notE) |
125 by (erule notE) |
171 text{*NEW*} |
|
172 |
|
173 |
|
174 |
126 |
175 lemma "(P \<or> Q) \<and> R \<Longrightarrow> P \<or> Q \<and> R" |
127 lemma "(P \<or> Q) \<and> R \<Longrightarrow> P \<or> Q \<and> R" |
176 apply intro |
128 apply intro |
177 txt{* |
129 --{* @{subgoals[display,indent=0,margin=65]} *} |
178 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline |
|
179 \isanewline |
|
180 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
181 {\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline |
|
182 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R{\isacharsemicolon}\ {\isasymnot}\ {\isacharparenleft}Q\ {\isasymand}\ R{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P |
|
183 *} |
|
184 |
130 |
185 apply (elim conjE disjE) |
131 apply (elim conjE disjE) |
186 apply assumption |
132 apply assumption |
187 |
133 --{* @{subgoals[display,indent=0,margin=65]} *} |
188 txt{* |
|
189 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{4}}\isanewline |
|
190 \isanewline |
|
191 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
192 {\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline |
|
193 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isasymnot}\ {\isacharparenleft}Q\ {\isasymand}\ R{\isacharparenright}{\isacharsemicolon}\ R{\isacharsemicolon}\ Q{\isasymrbrakk}\ {\isasymLongrightarrow}\ P |
|
194 *} |
|
195 |
134 |
196 by (erule contrapos_np, rule conjI) |
135 by (erule contrapos_np, rule conjI) |
197 text{*NEW |
136 text{* |
198 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{6}}\isanewline |
137 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{6}}\isanewline |
199 \isanewline |
138 \isanewline |
200 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
139 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
201 {\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline |
140 {\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline |
202 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\isanewline |
141 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\isanewline |
207 text{*Quantifiers*} |
146 text{*Quantifiers*} |
208 |
147 |
209 lemma "\<forall>x. P x \<longrightarrow> P x" |
148 lemma "\<forall>x. P x \<longrightarrow> P x" |
210 apply (rule allI) |
149 apply (rule allI) |
211 by (rule impI) |
150 by (rule impI) |
212 text{*NEW*} |
|
213 |
151 |
214 lemma "(\<forall>x. P \<longrightarrow> Q x) \<Longrightarrow> P \<longrightarrow> (\<forall>x. Q x)" |
152 lemma "(\<forall>x. P \<longrightarrow> Q x) \<Longrightarrow> P \<longrightarrow> (\<forall>x. Q x)" |
215 apply (rule impI, rule allI) |
153 apply (rule impI, rule allI) |
216 apply (drule spec) |
154 apply (drule spec) |
217 by (drule mp) |
155 by (drule mp) |
218 text{*NEW*} |
156 |
|
157 text{*NEW: rename_tac*} |
|
158 lemma "x < y \<Longrightarrow> \<forall>x y. P x (f y)" |
|
159 apply intro |
|
160 --{* @{subgoals[display,indent=0,margin=65]} *} |
|
161 apply (rename_tac v w) |
|
162 --{* @{subgoals[display,indent=0,margin=65]} *} |
|
163 oops |
|
164 |
219 |
165 |
220 lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (h x); P a\<rbrakk> \<Longrightarrow> P(h (h a))" |
166 lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (h x); P a\<rbrakk> \<Longrightarrow> P(h (h a))" |
221 apply (frule spec) |
167 apply (frule spec) |
|
168 --{* @{subgoals[display,indent=0,margin=65]} *} |
222 apply (drule mp, assumption) |
169 apply (drule mp, assumption) |
223 apply (drule spec) |
170 apply (drule spec) |
|
171 --{* @{subgoals[display,indent=0,margin=65]} *} |
224 by (drule mp) |
172 by (drule mp) |
225 text{*NEW*} |
173 |
226 |
|
227 |
|
228 text |
|
229 {* |
|
230 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline |
|
231 \isanewline |
|
232 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
233 {\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}{\isacharsemicolon}\ P\ a{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ {\isacharparenleft}f\ a{\isacharparenright}{\isacharparenright}\isanewline |
|
234 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}{\isacharsemicolon}\ P\ a{\isacharsemicolon}\ P\ {\isacharquery}x\ {\isasymlongrightarrow}\ P\ {\isacharparenleft}f\ {\isacharquery}x{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ {\isacharparenleft}f\ a{\isacharparenright}{\isacharparenright} |
|
235 *} |
|
236 |
|
237 text{* |
|
238 proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{3}}\isanewline |
|
239 \isanewline |
|
240 goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline |
|
241 {\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}{\isacharsemicolon}\ P\ a{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ {\isacharparenleft}f\ a{\isacharparenright}{\isacharparenright}\isanewline |
|
242 \ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ P\ {\isacharparenleft}f\ x{\isacharparenright}{\isacharsemicolon}\ P\ a{\isacharsemicolon}\ P\ {\isacharparenleft}f\ a{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}f\ {\isacharparenleft}f\ a{\isacharparenright}{\isacharparenright} |
|
243 *} |
|
244 |
174 |
245 lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (f x); P a\<rbrakk> \<Longrightarrow> P(f (f a))" |
175 lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (f x); P a\<rbrakk> \<Longrightarrow> P(f (f a))" |
246 by blast |
176 by blast |
247 |
177 |
248 text{*NEW |
178 text{* |
249 Hilbert-epsilon theorems*} |
179 Hilbert-epsilon theorems*} |
250 |
180 |
251 text{* |
181 text{* |
252 @{thm[display] some_equality[no_vars]} |
182 @{thm[display] some_equality[no_vars]} |
253 \rulename{some_equality} |
183 \rulename{some_equality} |