src/HOL/Real_Vector_Spaces.thy
changeset 63967 2aa42596edc3
parent 63927 0efb482beb84
child 64240 eabf80376aab
equal deleted inserted replaced
63966:957ba35d1338 63967:2aa42596edc3
   372   from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)"
   372   from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)"
   373     by (rule inj_comp)
   373     by (rule inj_comp)
   374   then show "inj (of_nat :: nat \<Rightarrow> 'a)"
   374   then show "inj (of_nat :: nat \<Rightarrow> 'a)"
   375     by (simp add: comp_def)
   375     by (simp add: comp_def)
   376 qed
   376 qed
       
   377 
       
   378 lemma fraction_scaleR_times [simp]:
       
   379   fixes a :: "'a::real_algebra_1"
       
   380   shows "(numeral u / numeral v) *\<^sub>R (numeral w * a) = (numeral u * numeral w / numeral v) *\<^sub>R a"
       
   381 by (metis (no_types, lifting) of_real_numeral scaleR_conv_of_real scaleR_scaleR times_divide_eq_left)
       
   382 
       
   383 lemma inverse_scaleR_times [simp]:
       
   384   fixes a :: "'a::real_algebra_1"
       
   385   shows "(1 / numeral v) *\<^sub>R (numeral w * a) = (numeral w / numeral v) *\<^sub>R a"
       
   386 by (metis divide_inverse_commute inverse_eq_divide of_real_numeral scaleR_conv_of_real scaleR_scaleR)
       
   387 
       
   388 lemma scaleR_times [simp]:
       
   389   fixes a :: "'a::real_algebra_1"
       
   390   shows "(numeral u) *\<^sub>R (numeral w * a) = (numeral u * numeral w) *\<^sub>R a"
       
   391 by (simp add: scaleR_conv_of_real)
   377 
   392 
   378 instance real_field < field_char_0 ..
   393 instance real_field < field_char_0 ..
   379 
   394 
   380 
   395 
   381 subsection \<open>The Set of Real Numbers\<close>
   396 subsection \<open>The Set of Real Numbers\<close>