equal
deleted
inserted
replaced
372 from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" |
372 from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" |
373 by (rule inj_comp) |
373 by (rule inj_comp) |
374 then show "inj (of_nat :: nat \<Rightarrow> 'a)" |
374 then show "inj (of_nat :: nat \<Rightarrow> 'a)" |
375 by (simp add: comp_def) |
375 by (simp add: comp_def) |
376 qed |
376 qed |
|
377 |
|
378 lemma fraction_scaleR_times [simp]: |
|
379 fixes a :: "'a::real_algebra_1" |
|
380 shows "(numeral u / numeral v) *\<^sub>R (numeral w * a) = (numeral u * numeral w / numeral v) *\<^sub>R a" |
|
381 by (metis (no_types, lifting) of_real_numeral scaleR_conv_of_real scaleR_scaleR times_divide_eq_left) |
|
382 |
|
383 lemma inverse_scaleR_times [simp]: |
|
384 fixes a :: "'a::real_algebra_1" |
|
385 shows "(1 / numeral v) *\<^sub>R (numeral w * a) = (numeral w / numeral v) *\<^sub>R a" |
|
386 by (metis divide_inverse_commute inverse_eq_divide of_real_numeral scaleR_conv_of_real scaleR_scaleR) |
|
387 |
|
388 lemma scaleR_times [simp]: |
|
389 fixes a :: "'a::real_algebra_1" |
|
390 shows "(numeral u) *\<^sub>R (numeral w * a) = (numeral u * numeral w) *\<^sub>R a" |
|
391 by (simp add: scaleR_conv_of_real) |
377 |
392 |
378 instance real_field < field_char_0 .. |
393 instance real_field < field_char_0 .. |
379 |
394 |
380 |
395 |
381 subsection \<open>The Set of Real Numbers\<close> |
396 subsection \<open>The Set of Real Numbers\<close> |