src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy
changeset 70380 2b0dca68c3ee
parent 70378 ebd108578ab1
child 70381 b151d1f00204
equal deleted inserted replaced
70379:8a7053892d8e 70380:2b0dca68c3ee
   954   have "integrable lebesgue (\<lambda>x. indicator S x *\<^sub>R f x)"
   954   have "integrable lebesgue (\<lambda>x. indicator S x *\<^sub>R f x)"
   955     using S f inf_top.comm_neutral integrable_restrict_space by blast
   955     using S f inf_top.comm_neutral integrable_restrict_space by blast
   956   then show ?thesis
   956   then show ?thesis
   957     using absolutely_integrable_on_def set_integrable_def by blast
   957     using absolutely_integrable_on_def set_integrable_def by blast
   958 qed
   958 qed
       
   959 
       
   960 lemma absolutely_integrable_imp_integrable:
       
   961   assumes "f absolutely_integrable_on S" "S \<in> sets lebesgue"
       
   962   shows "integrable (lebesgue_on S) f"
       
   963   by (meson assms integrable_restrict_space set_integrable_def sets.Int sets.top)
   959 
   964 
   960 lemma absolutely_integrable_on_null [intro]:
   965 lemma absolutely_integrable_on_null [intro]:
   961   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
   966   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
   962   shows "content (cbox a b) = 0 \<Longrightarrow> f absolutely_integrable_on (cbox a b)"
   967   shows "content (cbox a b) = 0 \<Longrightarrow> f absolutely_integrable_on (cbox a b)"
   963   by (auto simp: absolutely_integrable_on_def)
   968   by (auto simp: absolutely_integrable_on_def)