10 where |
10 where |
11 "left Leaf = Leaf" |
11 "left Leaf = Leaf" |
12 | "right Leaf = Leaf" |
12 | "right Leaf = Leaf" |
13 |
13 |
14 lemma neq_Leaf_iff: "(t \<noteq> Leaf) = (\<exists>l a r. t = Node l a r)" |
14 lemma neq_Leaf_iff: "(t \<noteq> Leaf) = (\<exists>l a r. t = Node l a r)" |
15 by (cases t) auto |
15 by (cases t) auto |
16 |
16 |
17 fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where |
17 fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where |
18 "subtrees Leaf = {Leaf}" | |
18 "subtrees Leaf = {Leaf}" | |
19 "subtrees (Node l a r) = insert (Node l a r) (subtrees l \<union> subtrees r)" |
19 "subtrees (Node l a r) = insert (Node l a r) (subtrees l \<union> subtrees r)" |
20 |
20 |
21 lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. Node l a r \<in> subtrees t" |
21 lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. Node l a r \<in> subtrees t" |
22 by (induction t)(auto) |
22 by (induction t)(auto) |
23 |
23 |
24 lemma Node_notin_subtrees_if[simp]: |
24 lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" |
25 "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" |
|
26 by (induction t) auto |
25 by (induction t) auto |
27 |
26 |
28 lemma in_set_tree_if: |
27 lemma in_set_tree_if: "Node l a r \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" |
29 "Node l a r \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" |
|
30 by (metis Node_notin_subtrees_if) |
28 by (metis Node_notin_subtrees_if) |
31 |
29 |
32 fun inorder :: "'a tree \<Rightarrow> 'a list" where |
30 fun inorder :: "'a tree \<Rightarrow> 'a list" where |
33 "inorder Leaf = []" | |
31 "inorder Leaf = []" | |
34 "inorder (Node l x r) = inorder l @ [x] @ inorder r" |
32 "inorder (Node l x r) = inorder l @ [x] @ inorder r" |
35 |
33 |
36 lemma set_inorder[simp]: "set (inorder t) = set_tree t" |
34 lemma set_inorder[simp]: "set (inorder t) = set_tree t" |
37 by (induction t) auto |
35 by (induction t) auto |
38 |
36 |
39 subsection {* Binary Search Tree predicate *} |
37 subsection {* Binary Search Tree predicate *} |
40 |
38 |
41 inductive bst :: "'a::linorder tree \<Rightarrow> bool" where |
39 fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where |
42 Leaf[intro!, simp]: "bst Leaf" | |
40 "bst Leaf \<longleftrightarrow> True" | |
43 Node: "bst l \<Longrightarrow> bst r \<Longrightarrow> (\<And>x. x \<in> set_tree l \<Longrightarrow> x < a) \<Longrightarrow> (\<And>x. x \<in> set_tree r \<Longrightarrow> a < x) \<Longrightarrow> |
41 "bst (Node l a r) \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)" |
44 bst (Node l a r)" |
|
45 |
42 |
46 lemma bst_imp_sorted: "bst t \<Longrightarrow> sorted (inorder t)" |
43 lemma (in linorder) bst_imp_sorted: "bst t \<Longrightarrow> sorted (inorder t)" |
47 by (induction rule: bst.induct) (auto simp: sorted_append sorted_Cons intro: less_imp_le less_trans) |
44 by (induction t) (auto simp: sorted_append sorted_Cons intro: less_imp_le less_trans) |
48 |
45 |
49 end |
46 end |