equal
deleted
inserted
replaced
2367 then show "f x \<le> b" |
2367 then show "f x \<le> b" |
2368 using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] |
2368 using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] |
2369 using hull_inc u by fastforce |
2369 using hull_inc u by fastforce |
2370 qed |
2370 qed |
2371 |
2371 |
2372 lemma inner_sum_Basis[simp]: "i \<in> Basis \<Longrightarrow> (\<Sum>Basis) \<bullet> i = 1" |
|
2373 by (simp add: inner_sum_left sum.If_cases inner_Basis) |
|
2374 |
|
2375 lemma convex_set_plus: |
2372 lemma convex_set_plus: |
2376 assumes "convex S" and "convex T" shows "convex (S + T)" |
2373 assumes "convex S" and "convex T" shows "convex (S + T)" |
2377 proof - |
2374 proof - |
2378 have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" |
2375 have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" |
2379 using assms by (rule convex_sums) |
2376 using assms by (rule convex_sums) |