src/HOL/Analysis/Convex.thy
changeset 77490 2c86ea8961b5
parent 74729 64b3d8d9bd10
child 78475 a5f6d2fc1b1f
equal deleted inserted replaced
77435:df1150ec6cd7 77490:2c86ea8961b5
  2367   then show "f x \<le> b"
  2367   then show "f x \<le> b"
  2368     using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
  2368     using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
  2369     using hull_inc u by fastforce
  2369     using hull_inc u by fastforce
  2370 qed
  2370 qed
  2371 
  2371 
  2372 lemma inner_sum_Basis[simp]: "i \<in> Basis \<Longrightarrow> (\<Sum>Basis) \<bullet> i = 1"
       
  2373   by (simp add: inner_sum_left sum.If_cases inner_Basis)
       
  2374 
       
  2375 lemma convex_set_plus:
  2372 lemma convex_set_plus:
  2376   assumes "convex S" and "convex T" shows "convex (S + T)"
  2373   assumes "convex S" and "convex T" shows "convex (S + T)"
  2377 proof -
  2374 proof -
  2378   have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
  2375   have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
  2379     using assms by (rule convex_sums)
  2376     using assms by (rule convex_sums)