src/HOL/Integ/NatSimprocs.thy
changeset 20485 3078fd2eec7b
parent 18648 22f96cd085d5
child 20500 11da1ce8dbd8
equal deleted inserted replaced
20484:3d3d24186352 20485:3078fd2eec7b
    20 by (simp add: numeral_0_eq_0 numeral_1_eq_1 split add: nat_diff_split)
    20 by (simp add: numeral_0_eq_0 numeral_1_eq_1 split add: nat_diff_split)
    21 
    21 
    22 text {*Now just instantiating @{text n} to @{text "number_of v"} does
    22 text {*Now just instantiating @{text n} to @{text "number_of v"} does
    23   the right simplification, but with some redundant inequality
    23   the right simplification, but with some redundant inequality
    24   tests.*}
    24   tests.*}
    25 lemma neg_number_of_bin_pred_iff_0:
    25 lemma neg_number_of_pred_iff_0:
    26      "neg (number_of (bin_pred v)::int) = (number_of v = (0::nat))"
    26   "neg (number_of (pred v)::int) = (number_of v = (0::nat))"
    27 apply (subgoal_tac "neg (number_of (bin_pred v)) = (number_of v < Suc 0) ")
    27 apply (subgoal_tac "neg (number_of (pred v)) = (number_of v < Suc 0) ")
    28 apply (simp only: less_Suc_eq_le le_0_eq)
    28 apply (simp only: less_Suc_eq_le le_0_eq)
    29 apply (subst less_number_of_Suc, simp)
    29 apply (subst less_number_of_Suc, simp)
    30 done
    30 done
    31 
    31 
    32 text{*No longer required as a simprule because of the @{text inverse_fold}
    32 text{*No longer required as a simprule because of the @{text inverse_fold}
    33    simproc*}
    33    simproc*}
    34 lemma Suc_diff_number_of:
    34 lemma Suc_diff_number_of:
    35      "neg (number_of (bin_minus v)::int) ==>  
    35      "neg (number_of (uminus v)::int) ==>  
    36       Suc m - (number_of v) = m - (number_of (bin_pred v))"
    36       Suc m - (number_of v) = m - (number_of (pred v))"
    37 apply (subst Suc_diff_eq_diff_pred)
    37 apply (subst Suc_diff_eq_diff_pred)
    38 apply simp
    38 apply simp
    39 apply (simp del: nat_numeral_1_eq_1)
    39 apply (simp del: nat_numeral_1_eq_1)
    40 apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric] 
    40 apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric] 
    41                         neg_number_of_bin_pred_iff_0)
    41                         neg_number_of_pred_iff_0)
    42 done
    42 done
    43 
    43 
    44 lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
    44 lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
    45 by (simp add: numerals split add: nat_diff_split)
    45 by (simp add: numerals split add: nat_diff_split)
    46 
    46 
    47 
    47 
    48 subsection{*For @{term nat_case} and @{term nat_rec}*}
    48 subsection{*For @{term nat_case} and @{term nat_rec}*}
    49 
    49 
    50 lemma nat_case_number_of [simp]:
    50 lemma nat_case_number_of [simp]:
    51      "nat_case a f (number_of v) =  
    51      "nat_case a f (number_of v) =  
    52         (let pv = number_of (bin_pred v) in  
    52         (let pv = number_of (pred v) in  
    53          if neg pv then a else f (nat pv))"
    53          if neg pv then a else f (nat pv))"
    54 by (simp split add: nat.split add: Let_def neg_number_of_bin_pred_iff_0)
    54 by (simp split add: nat.split add: Let_def neg_number_of_pred_iff_0)
    55 
    55 
    56 lemma nat_case_add_eq_if [simp]:
    56 lemma nat_case_add_eq_if [simp]:
    57      "nat_case a f ((number_of v) + n) =  
    57      "nat_case a f ((number_of v) + n) =  
    58        (let pv = number_of (bin_pred v) in  
    58        (let pv = number_of (pred v) in  
    59          if neg pv then nat_case a f n else f (nat pv + n))"
    59          if neg pv then nat_case a f n else f (nat pv + n))"
    60 apply (subst add_eq_if)
    60 apply (subst add_eq_if)
    61 apply (simp split add: nat.split
    61 apply (simp split add: nat.split
    62             del: nat_numeral_1_eq_1
    62             del: nat_numeral_1_eq_1
    63 	    add: numeral_1_eq_Suc_0 [symmetric] Let_def 
    63 	    add: numeral_1_eq_Suc_0 [symmetric] Let_def 
    64                  neg_imp_number_of_eq_0 neg_number_of_bin_pred_iff_0)
    64                  neg_imp_number_of_eq_0 neg_number_of_pred_iff_0)
    65 done
    65 done
    66 
    66 
    67 lemma nat_rec_number_of [simp]:
    67 lemma nat_rec_number_of [simp]:
    68      "nat_rec a f (number_of v) =  
    68      "nat_rec a f (number_of v) =  
    69         (let pv = number_of (bin_pred v) in  
    69         (let pv = number_of (pred v) in  
    70          if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))"
    70          if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))"
    71 apply (case_tac " (number_of v) ::nat")
    71 apply (case_tac " (number_of v) ::nat")
    72 apply (simp_all (no_asm_simp) add: Let_def neg_number_of_bin_pred_iff_0)
    72 apply (simp_all (no_asm_simp) add: Let_def neg_number_of_pred_iff_0)
    73 apply (simp split add: split_if_asm)
    73 apply (simp split add: split_if_asm)
    74 done
    74 done
    75 
    75 
    76 lemma nat_rec_add_eq_if [simp]:
    76 lemma nat_rec_add_eq_if [simp]:
    77      "nat_rec a f (number_of v + n) =  
    77      "nat_rec a f (number_of v + n) =  
    78         (let pv = number_of (bin_pred v) in  
    78         (let pv = number_of (pred v) in  
    79          if neg pv then nat_rec a f n  
    79          if neg pv then nat_rec a f n  
    80                    else f (nat pv + n) (nat_rec a f (nat pv + n)))"
    80                    else f (nat pv + n) (nat_rec a f (nat pv + n)))"
    81 apply (subst add_eq_if)
    81 apply (subst add_eq_if)
    82 apply (simp split add: nat.split
    82 apply (simp split add: nat.split
    83             del: nat_numeral_1_eq_1
    83             del: nat_numeral_1_eq_1
    84             add: numeral_1_eq_Suc_0 [symmetric] Let_def neg_imp_number_of_eq_0
    84             add: numeral_1_eq_Suc_0 [symmetric] Let_def neg_imp_number_of_eq_0
    85                  neg_number_of_bin_pred_iff_0)
    85                  neg_number_of_pred_iff_0)
    86 done
    86 done
    87 
    87 
    88 
    88 
    89 subsection{*Various Other Lemmas*}
    89 subsection{*Various Other Lemmas*}
    90 
    90