src/ZF/Perm.thy
changeset 13176 312bd350579b
parent 9570 e16e168984e1
child 13180 a82610e49b2d
equal deleted inserted replaced
13175:81082cfa5618 13176:312bd350579b
     7   -- Composition of relations, the identity relation
     7   -- Composition of relations, the identity relation
     8   -- Injections, surjections, bijections
     8   -- Injections, surjections, bijections
     9   -- Lemmas for the Schroeder-Bernstein Theorem
     9   -- Lemmas for the Schroeder-Bernstein Theorem
    10 *)
    10 *)
    11 
    11 
    12 Perm = mono + func +
    12 theory Perm = mono + func:
    13 consts
    13 
    14   O     :: [i,i]=>i      (infixr 60)
    14 constdefs
    15 
    15 
    16 defs
       
    17   (*composition of relations and functions; NOT Suppes's relative product*)
    16   (*composition of relations and functions; NOT Suppes's relative product*)
    18   comp_def    "r O s == {xz : domain(s)*range(r) . 
    17   comp     :: "[i,i]=>i"      (infixr "O" 60)
    19                               EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
    18     "r O s == {xz : domain(s)*range(r) . 
    20 
    19                EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
    21 constdefs
    20 
    22   (*the identity function for A*)
    21   (*the identity function for A*)
    23   id    :: i=>i
    22   id    :: "i=>i"
    24   "id(A) == (lam x:A. x)"
    23     "id(A) == (lam x:A. x)"
    25 
    24 
    26   (*one-to-one functions from A to B*)
    25   (*one-to-one functions from A to B*)
    27   inj   :: [i,i]=>i
    26   inj   :: "[i,i]=>i"
    28   "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
    27     "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
    29 
    28 
    30   (*onto functions from A to B*)
    29   (*onto functions from A to B*)
    31   surj  :: [i,i]=>i
    30   surj  :: "[i,i]=>i"
    32   "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
    31     "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
    33 
    32 
    34   (*one-to-one and onto functions*)
    33   (*one-to-one and onto functions*)
    35   bij   :: [i,i]=>i
    34   bij   :: "[i,i]=>i"
    36   "bij(A,B) == inj(A,B) Int surj(A,B)"
    35     "bij(A,B) == inj(A,B) Int surj(A,B)"
       
    36 
       
    37 
       
    38 (** Surjective function space **)
       
    39 
       
    40 lemma surj_is_fun: "f: surj(A,B) ==> f: A->B"
       
    41 apply (unfold surj_def)
       
    42 apply (erule CollectD1)
       
    43 done
       
    44 
       
    45 lemma fun_is_surj: "f : Pi(A,B) ==> f: surj(A,range(f))"
       
    46 apply (unfold surj_def)
       
    47 apply (blast intro: apply_equality range_of_fun domain_type)
       
    48 done
       
    49 
       
    50 lemma surj_range: "f: surj(A,B) ==> range(f)=B"
       
    51 apply (unfold surj_def)
       
    52 apply (best intro: apply_Pair elim: range_type)
       
    53 done
       
    54 
       
    55 (** A function with a right inverse is a surjection **)
       
    56 
       
    57 lemma f_imp_surjective: 
       
    58     "[| f: A->B;  !!y. y:B ==> d(y): A;  !!y. y:B ==> f`d(y) = y |]
       
    59      ==> f: surj(A,B)"
       
    60 apply (simp add: surj_def) 
       
    61 apply (blast)
       
    62 done
       
    63 
       
    64 lemma lam_surjective: 
       
    65     "[| !!x. x:A ==> c(x): B;            
       
    66         !!y. y:B ==> d(y): A;            
       
    67         !!y. y:B ==> c(d(y)) = y         
       
    68      |] ==> (lam x:A. c(x)) : surj(A,B)"
       
    69 apply (rule_tac d = "d" in f_imp_surjective) 
       
    70 apply (simp_all add: lam_type)
       
    71 done
       
    72 
       
    73 (*Cantor's theorem revisited*)
       
    74 lemma cantor_surj: "f ~: surj(A,Pow(A))"
       
    75 apply (unfold surj_def)
       
    76 apply safe
       
    77 apply (cut_tac cantor)
       
    78 apply (best del: subsetI) 
       
    79 done
       
    80 
       
    81 
       
    82 (** Injective function space **)
       
    83 
       
    84 lemma inj_is_fun: "f: inj(A,B) ==> f: A->B"
       
    85 apply (unfold inj_def)
       
    86 apply (erule CollectD1)
       
    87 done
       
    88 
       
    89 (*Good for dealing with sets of pairs, but a bit ugly in use [used in AC]*)
       
    90 lemma inj_equality: 
       
    91     "[| <a,b>:f;  <c,b>:f;  f: inj(A,B) |] ==> a=c"
       
    92 apply (unfold inj_def)
       
    93 apply (blast dest: Pair_mem_PiD)
       
    94 done
       
    95 
       
    96 lemma inj_apply_equality: "[| f:inj(A,B);  a:A;  b:A;  f`a=f`b |] ==> a=b"
       
    97 apply (unfold inj_def)
       
    98 apply blast
       
    99 done
       
   100 
       
   101 (** A function with a left inverse is an injection **)
       
   102 
       
   103 lemma f_imp_injective: "[| f: A->B;  ALL x:A. d(f`x)=x |] ==> f: inj(A,B)"
       
   104 apply (simp (no_asm_simp) add: inj_def)
       
   105 apply (blast intro: subst_context [THEN box_equals])
       
   106 done
       
   107 
       
   108 lemma lam_injective: 
       
   109     "[| !!x. x:A ==> c(x): B;            
       
   110         !!x. x:A ==> d(c(x)) = x |]
       
   111      ==> (lam x:A. c(x)) : inj(A,B)"
       
   112 apply (rule_tac d = "d" in f_imp_injective)
       
   113 apply (simp_all add: lam_type)
       
   114 done
       
   115 
       
   116 (** Bijections **)
       
   117 
       
   118 lemma bij_is_inj: "f: bij(A,B) ==> f: inj(A,B)"
       
   119 apply (unfold bij_def)
       
   120 apply (erule IntD1)
       
   121 done
       
   122 
       
   123 lemma bij_is_surj: "f: bij(A,B) ==> f: surj(A,B)"
       
   124 apply (unfold bij_def)
       
   125 apply (erule IntD2)
       
   126 done
       
   127 
       
   128 (* f: bij(A,B) ==> f: A->B *)
       
   129 lemmas bij_is_fun = bij_is_inj [THEN inj_is_fun, standard]
       
   130 
       
   131 lemma lam_bijective: 
       
   132     "[| !!x. x:A ==> c(x): B;            
       
   133         !!y. y:B ==> d(y): A;            
       
   134         !!x. x:A ==> d(c(x)) = x;        
       
   135         !!y. y:B ==> c(d(y)) = y         
       
   136      |] ==> (lam x:A. c(x)) : bij(A,B)"
       
   137 apply (unfold bij_def)
       
   138 apply (blast intro!: lam_injective lam_surjective);
       
   139 done
       
   140 
       
   141 lemma RepFun_bijective: "(ALL y : x. EX! y'. f(y') = f(y))   
       
   142       ==> (lam z:{f(y). y:x}. THE y. f(y) = z) : bij({f(y). y:x}, x)"
       
   143 apply (rule_tac d = "f" in lam_bijective)
       
   144 apply (auto simp add: the_equality2)
       
   145 done
       
   146 
       
   147 
       
   148 (** Identity function **)
       
   149 
       
   150 lemma idI [intro!]: "a:A ==> <a,a> : id(A)"
       
   151 apply (unfold id_def)
       
   152 apply (erule lamI)
       
   153 done
       
   154 
       
   155 lemma idE [elim!]: "[| p: id(A);  !!x.[| x:A; p=<x,x> |] ==> P |] ==>  P"
       
   156 apply (simp add: id_def lam_def) 
       
   157 apply (blast intro: elim:); 
       
   158 done
       
   159 
       
   160 lemma id_type: "id(A) : A->A"
       
   161 apply (unfold id_def)
       
   162 apply (rule lam_type)
       
   163 apply assumption
       
   164 done
       
   165 
       
   166 lemma id_conv [simp]: "x:A ==> id(A)`x = x"
       
   167 apply (unfold id_def)
       
   168 apply (simp (no_asm_simp))
       
   169 done
       
   170 
       
   171 lemma id_mono: "A<=B ==> id(A) <= id(B)"
       
   172 apply (unfold id_def)
       
   173 apply (erule lam_mono)
       
   174 done
       
   175 
       
   176 lemma id_subset_inj: "A<=B ==> id(A): inj(A,B)"
       
   177 apply (simp add: inj_def id_def)
       
   178 apply (blast intro: lam_type) 
       
   179 done
       
   180 
       
   181 lemmas id_inj = subset_refl [THEN id_subset_inj, standard]
       
   182 
       
   183 lemma id_surj: "id(A): surj(A,A)"
       
   184 apply (unfold id_def surj_def)
       
   185 apply (simp (no_asm_simp))
       
   186 done
       
   187 
       
   188 lemma id_bij: "id(A): bij(A,A)"
       
   189 apply (unfold bij_def)
       
   190 apply (blast intro: id_inj id_surj)
       
   191 done
       
   192 
       
   193 lemma subset_iff_id: "A <= B <-> id(A) : A->B"
       
   194 apply (unfold id_def)
       
   195 apply (force intro!: lam_type dest: apply_type);
       
   196 done
       
   197 
       
   198 
       
   199 (*** Converse of a function ***)
       
   200 
       
   201 lemma inj_converse_fun: "f: inj(A,B) ==> converse(f) : range(f)->A"
       
   202 apply (unfold inj_def)
       
   203 apply (simp (no_asm_simp) add: Pi_iff function_def)
       
   204 apply (erule CollectE)
       
   205 apply (simp (no_asm_simp) add: apply_iff)
       
   206 apply (blast dest: fun_is_rel)
       
   207 done
       
   208 
       
   209 (** Equations for converse(f) **)
       
   210 
       
   211 (*The premises are equivalent to saying that f is injective...*) 
       
   212 lemma left_inverse_lemma:
       
   213      "[| f: A->B;  converse(f): C->A;  a: A |] ==> converse(f)`(f`a) = a"
       
   214 by (blast intro: apply_Pair apply_equality converseI)
       
   215 
       
   216 lemma left_inverse [simp]: "[| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a"
       
   217 apply (blast intro: left_inverse_lemma inj_converse_fun inj_is_fun)
       
   218 done
       
   219 
       
   220 lemmas left_inverse_bij = bij_is_inj [THEN left_inverse, standard]
       
   221 
       
   222 lemma right_inverse_lemma:
       
   223      "[| f: A->B;  converse(f): C->A;  b: C |] ==> f`(converse(f)`b) = b"
       
   224 apply (rule apply_Pair [THEN converseD [THEN apply_equality]])
       
   225 apply (auto ); 
       
   226 done
       
   227 
       
   228 (*Should the premises be f:surj(A,B), b:B for symmetry with left_inverse?
       
   229   No: they would not imply that converse(f) was a function! *)
       
   230 lemma right_inverse [simp]:
       
   231      "[| f: inj(A,B);  b: range(f) |] ==> f`(converse(f)`b) = b"
       
   232 by (blast intro: right_inverse_lemma inj_converse_fun inj_is_fun)
       
   233 
       
   234 lemma right_inverse_bij: "[| f: bij(A,B);  b: B |] ==> f`(converse(f)`b) = b"
       
   235 apply (force simp add: bij_def surj_range)
       
   236 done
       
   237 
       
   238 (** Converses of injections, surjections, bijections **)
       
   239 
       
   240 lemma inj_converse_inj: "f: inj(A,B) ==> converse(f): inj(range(f), A)"
       
   241 apply (rule f_imp_injective)
       
   242 apply (erule inj_converse_fun)
       
   243 apply (clarify ); 
       
   244 apply (rule right_inverse);
       
   245  apply assumption
       
   246 apply (blast intro: elim:); 
       
   247 done
       
   248 
       
   249 lemma inj_converse_surj: "f: inj(A,B) ==> converse(f): surj(range(f), A)"
       
   250 by (blast intro: f_imp_surjective inj_converse_fun left_inverse inj_is_fun 
       
   251                  range_of_fun [THEN apply_type])
       
   252 
       
   253 (*Adding this as an intro! rule seems to cause looping*)
       
   254 lemma bij_converse_bij [TC]: "f: bij(A,B) ==> converse(f): bij(B,A)"
       
   255 apply (unfold bij_def)
       
   256 apply (fast elim: surj_range [THEN subst] inj_converse_inj inj_converse_surj)
       
   257 done
       
   258 
       
   259 
       
   260 
       
   261 (** Composition of two relations **)
       
   262 
       
   263 (*The inductive definition package could derive these theorems for (r O s)*)
       
   264 
       
   265 lemma compI [intro]: "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"
       
   266 apply (unfold comp_def)
       
   267 apply blast
       
   268 done
       
   269 
       
   270 lemma compE [elim!]: 
       
   271     "[| xz : r O s;   
       
   272         !!x y z. [| xz=<x,z>;  <x,y>:s;  <y,z>:r |] ==> P |]
       
   273      ==> P"
       
   274 apply (unfold comp_def)
       
   275 apply blast
       
   276 done
       
   277 
       
   278 lemma compEpair: 
       
   279     "[| <a,c> : r O s;   
       
   280         !!y. [| <a,y>:s;  <y,c>:r |] ==> P |]
       
   281      ==> P"
       
   282 apply (erule compE)
       
   283 apply (simp add: );  
       
   284 done
       
   285 
       
   286 lemma converse_comp: "converse(R O S) = converse(S) O converse(R)"
       
   287 apply blast
       
   288 done
       
   289 
       
   290 
       
   291 (** Domain and Range -- see Suppes, section 3.1 **)
       
   292 
       
   293 (*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*)
       
   294 lemma range_comp: "range(r O s) <= range(r)"
       
   295 apply blast
       
   296 done
       
   297 
       
   298 lemma range_comp_eq: "domain(r) <= range(s) ==> range(r O s) = range(r)"
       
   299 apply (rule range_comp [THEN equalityI])
       
   300 apply blast
       
   301 done
       
   302 
       
   303 lemma domain_comp: "domain(r O s) <= domain(s)"
       
   304 apply blast
       
   305 done
       
   306 
       
   307 lemma domain_comp_eq: "range(s) <= domain(r) ==> domain(r O s) = domain(s)"
       
   308 apply (rule domain_comp [THEN equalityI])
       
   309 apply blast
       
   310 done
       
   311 
       
   312 lemma image_comp: "(r O s)``A = r``(s``A)"
       
   313 apply blast
       
   314 done
       
   315 
       
   316 
       
   317 (** Other results **)
       
   318 
       
   319 lemma comp_mono: "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"
       
   320 apply blast
       
   321 done
       
   322 
       
   323 (*composition preserves relations*)
       
   324 lemma comp_rel: "[| s<=A*B;  r<=B*C |] ==> (r O s) <= A*C"
       
   325 apply blast
       
   326 done
       
   327 
       
   328 (*associative law for composition*)
       
   329 lemma comp_assoc: "(r O s) O t = r O (s O t)"
       
   330 apply blast
       
   331 done
       
   332 
       
   333 (*left identity of composition; provable inclusions are
       
   334         id(A) O r <= r       
       
   335   and   [| r<=A*B; B<=C |] ==> r <= id(C) O r *)
       
   336 lemma left_comp_id: "r<=A*B ==> id(B) O r = r"
       
   337 apply blast
       
   338 done
       
   339 
       
   340 (*right identity of composition; provable inclusions are
       
   341         r O id(A) <= r
       
   342   and   [| r<=A*B; A<=C |] ==> r <= r O id(C) *)
       
   343 lemma right_comp_id: "r<=A*B ==> r O id(A) = r"
       
   344 apply blast
       
   345 done
       
   346 
       
   347 
       
   348 (** Composition preserves functions, injections, and surjections **)
       
   349 
       
   350 lemma comp_function: 
       
   351     "[| function(g);  function(f) |] ==> function(f O g)"
       
   352 apply (unfold function_def)
       
   353 apply blast
       
   354 done
       
   355 
       
   356 (*Don't think the premises can be weakened much*)
       
   357 lemma comp_fun: "[| g: A->B;  f: B->C |] ==> (f O g) : A->C"
       
   358 apply (auto simp add: Pi_def comp_function Pow_iff comp_rel)
       
   359 apply (subst range_rel_subset [THEN domain_comp_eq]);
       
   360 apply (auto ); 
       
   361 done
       
   362 
       
   363 (*Thanks to the new definition of "apply", the premise f: B->C is gone!*)
       
   364 lemma comp_fun_apply [simp]:
       
   365      "[| g: A->B;  a:A |] ==> (f O g)`a = f`(g`a)"
       
   366 apply (frule apply_Pair, assumption) 
       
   367 apply (simp add: apply_def image_comp)
       
   368 apply (blast dest: apply_equality) 
       
   369 done
       
   370 
       
   371 (*Simplifies compositions of lambda-abstractions*)
       
   372 lemma comp_lam: 
       
   373     "[| !!x. x:A ==> b(x): B |]
       
   374      ==> (lam y:B. c(y)) O (lam x:A. b(x)) = (lam x:A. c(b(x)))"
       
   375 apply (subgoal_tac "(lam x:A. b(x)) : A -> B") 
       
   376  apply (rule fun_extension)
       
   377    apply (blast intro: comp_fun lam_funtype)
       
   378   apply (rule lam_funtype)
       
   379  apply (simp add: ); 
       
   380 apply (simp add: lam_type); 
       
   381 done
       
   382 
       
   383 lemma comp_inj:
       
   384      "[| g: inj(A,B);  f: inj(B,C) |] ==> (f O g) : inj(A,C)"
       
   385 apply (frule inj_is_fun [of g]) 
       
   386 apply (frule inj_is_fun [of f]) 
       
   387 apply (rule_tac d = "%y. converse (g) ` (converse (f) ` y)" in f_imp_injective)
       
   388  apply (blast intro: comp_fun);
       
   389 apply (simp add: );  
       
   390 done
       
   391 
       
   392 lemma comp_surj: 
       
   393     "[| g: surj(A,B);  f: surj(B,C) |] ==> (f O g) : surj(A,C)"
       
   394 apply (unfold surj_def)
       
   395 apply (blast intro!: comp_fun comp_fun_apply)
       
   396 done
       
   397 
       
   398 lemma comp_bij: 
       
   399     "[| g: bij(A,B);  f: bij(B,C) |] ==> (f O g) : bij(A,C)"
       
   400 apply (unfold bij_def)
       
   401 apply (blast intro: comp_inj comp_surj)
       
   402 done
       
   403 
       
   404 
       
   405 (** Dual properties of inj and surj -- useful for proofs from
       
   406     D Pastre.  Automatic theorem proving in set theory. 
       
   407     Artificial Intelligence, 10:1--27, 1978. **)
       
   408 
       
   409 lemma comp_mem_injD1: 
       
   410     "[| (f O g): inj(A,C);  g: A->B;  f: B->C |] ==> g: inj(A,B)"
       
   411 apply (unfold inj_def)
       
   412 apply (force ); 
       
   413 done
       
   414 
       
   415 lemma comp_mem_injD2: 
       
   416     "[| (f O g): inj(A,C);  g: surj(A,B);  f: B->C |] ==> f: inj(B,C)"
       
   417 apply (unfold inj_def surj_def)
       
   418 apply safe
       
   419 apply (rule_tac x1 = "x" in bspec [THEN bexE])
       
   420 apply (erule_tac [3] x1 = "w" in bspec [THEN bexE])
       
   421 apply assumption+
       
   422 apply safe
       
   423 apply (rule_tac t = "op ` (g) " in subst_context)
       
   424 apply (erule asm_rl bspec [THEN bspec, THEN mp])+
       
   425 apply (simp (no_asm_simp))
       
   426 done
       
   427 
       
   428 lemma comp_mem_surjD1: 
       
   429     "[| (f O g): surj(A,C);  g: A->B;  f: B->C |] ==> f: surj(B,C)"
       
   430 apply (unfold surj_def)
       
   431 apply (blast intro!: comp_fun_apply [symmetric] apply_funtype)
       
   432 done
       
   433 
       
   434 
       
   435 lemma comp_mem_surjD2: 
       
   436     "[| (f O g): surj(A,C);  g: A->B;  f: inj(B,C) |] ==> g: surj(A,B)"
       
   437 apply (unfold inj_def surj_def)
       
   438 apply safe
       
   439 apply (drule_tac x = "f`y" in bspec);
       
   440 apply (auto );  
       
   441 apply (blast intro: apply_funtype)
       
   442 done
       
   443 
       
   444 (** inverses of composition **)
       
   445 
       
   446 (*left inverse of composition; one inclusion is
       
   447         f: A->B ==> id(A) <= converse(f) O f *)
       
   448 lemma left_comp_inverse: "f: inj(A,B) ==> converse(f) O f = id(A)"
       
   449 apply (unfold inj_def)
       
   450 apply (clarify ); 
       
   451 apply (rule equalityI) 
       
   452  apply (auto simp add: apply_iff)
       
   453 apply (blast intro: elim:);  
       
   454 done
       
   455 
       
   456 (*right inverse of composition; one inclusion is
       
   457                 f: A->B ==> f O converse(f) <= id(B) 
       
   458 *)
       
   459 lemma right_comp_inverse: 
       
   460     "f: surj(A,B) ==> f O converse(f) = id(B)"
       
   461 apply (simp add: surj_def) 
       
   462 apply (clarify ); 
       
   463 apply (rule equalityI)
       
   464 apply (best elim: domain_type range_type dest: apply_equality2)
       
   465 apply (blast intro: apply_Pair)
       
   466 done
       
   467 
       
   468 
       
   469 (** Proving that a function is a bijection **)
       
   470 
       
   471 lemma comp_eq_id_iff: 
       
   472     "[| f: A->B;  g: B->A |] ==> f O g = id(B) <-> (ALL y:B. f`(g`y)=y)"
       
   473 apply (unfold id_def)
       
   474 apply safe
       
   475  apply (drule_tac t = "%h. h`y " in subst_context)
       
   476  apply simp
       
   477 apply (rule fun_extension)
       
   478   apply (blast intro: comp_fun lam_type)
       
   479  apply auto
       
   480 done
       
   481 
       
   482 lemma fg_imp_bijective: 
       
   483     "[| f: A->B;  g: B->A;  f O g = id(B);  g O f = id(A) |] ==> f : bij(A,B)"
       
   484 apply (unfold bij_def)
       
   485 apply (simp add: comp_eq_id_iff)
       
   486 apply (blast intro: f_imp_injective f_imp_surjective apply_funtype);
       
   487 done
       
   488 
       
   489 lemma nilpotent_imp_bijective: "[| f: A->A;  f O f = id(A) |] ==> f : bij(A,A)"
       
   490 apply (blast intro: fg_imp_bijective)
       
   491 done
       
   492 
       
   493 lemma invertible_imp_bijective: "[| converse(f): B->A;  f: A->B |] ==> f : bij(A,B)"
       
   494 apply (simp (no_asm_simp) add: fg_imp_bijective comp_eq_id_iff left_inverse_lemma right_inverse_lemma)
       
   495 done
       
   496 
       
   497 (** Unions of functions -- cf similar theorems on func.ML **)
       
   498 
       
   499 (*Theorem by KG, proof by LCP*)
       
   500 lemma inj_disjoint_Un:
       
   501      "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |]  
       
   502       ==> (lam a: A Un C. if a:A then f`a else g`a) : inj(A Un C, B Un D)"
       
   503 apply (rule_tac d = "%z. if z:B then converse (f) `z else converse (g) `z" in lam_injective)
       
   504 apply (auto simp add: inj_is_fun [THEN apply_type])
       
   505 apply (blast intro: inj_is_fun [THEN apply_type])
       
   506 done
       
   507 
       
   508 lemma surj_disjoint_Un: 
       
   509     "[| f: surj(A,B);  g: surj(C,D);  A Int C = 0 |]   
       
   510      ==> (f Un g) : surj(A Un C, B Un D)"
       
   511 apply (unfold surj_def)
       
   512 apply (blast intro: fun_disjoint_apply1 fun_disjoint_apply2 fun_disjoint_Un trans)
       
   513 done
       
   514 
       
   515 (*A simple, high-level proof; the version for injections follows from it,
       
   516   using  f:inj(A,B) <-> f:bij(A,range(f))  *)
       
   517 lemma bij_disjoint_Un:
       
   518      "[| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |]  
       
   519       ==> (f Un g) : bij(A Un C, B Un D)"
       
   520 apply (rule invertible_imp_bijective)
       
   521 apply (subst converse_Un)
       
   522 apply (auto intro: fun_disjoint_Un bij_is_fun bij_converse_bij)
       
   523 done
       
   524 
       
   525 
       
   526 (** Restrictions as surjections and bijections *)
       
   527 
       
   528 lemma surj_image:
       
   529     "f: Pi(A,B) ==> f: surj(A, f``A)"
       
   530 apply (simp add: surj_def); 
       
   531 apply (blast intro: apply_equality apply_Pair Pi_type); 
       
   532 done
       
   533 
       
   534 lemma restrict_image [simp]: "restrict(f,A) `` B = f `` (A Int B)"
       
   535 apply (auto simp add: restrict_def)
       
   536 done
       
   537 
       
   538 lemma restrict_inj: 
       
   539     "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): inj(C,B)"
       
   540 apply (unfold inj_def)
       
   541 apply (safe elim!: restrict_type2); 
       
   542 apply (auto ); 
       
   543 done
       
   544 
       
   545 lemma restrict_surj: "[| f: Pi(A,B);  C<=A |] ==> restrict(f,C): surj(C, f``C)"
       
   546 apply (insert restrict_type2 [THEN surj_image])
       
   547 apply (simp add: restrict_image); 
       
   548 done
       
   549 
       
   550 lemma restrict_bij: 
       
   551     "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): bij(C, f``C)"
       
   552 apply (unfold inj_def bij_def)
       
   553 apply (blast intro!: restrict restrict_surj intro: box_equals surj_is_fun)
       
   554 done
       
   555 
       
   556 
       
   557 (*** Lemmas for Ramsey's Theorem ***)
       
   558 
       
   559 lemma inj_weaken_type: "[| f: inj(A,B);  B<=D |] ==> f: inj(A,D)"
       
   560 apply (unfold inj_def)
       
   561 apply (blast intro: fun_weaken_type)
       
   562 done
       
   563 
       
   564 lemma inj_succ_restrict:
       
   565      "[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})"
       
   566 apply (rule restrict_bij [THEN bij_is_inj, THEN inj_weaken_type])
       
   567 apply assumption
       
   568 apply blast
       
   569 apply (unfold inj_def)
       
   570 apply (fast elim: range_type mem_irrefl dest: apply_equality)
       
   571 done
       
   572 
       
   573 
       
   574 lemma inj_extend: 
       
   575     "[| f: inj(A,B);  a~:A;  b~:B |]  
       
   576      ==> cons(<a,b>,f) : inj(cons(a,A), cons(b,B))"
       
   577 apply (unfold inj_def)
       
   578 apply (force intro: apply_type  simp add: fun_extend)
       
   579 done
       
   580 
       
   581 
       
   582 ML
       
   583 {*
       
   584 val comp_def = thm "comp_def";
       
   585 val id_def = thm "id_def";
       
   586 val inj_def = thm "inj_def";
       
   587 val surj_def = thm "surj_def";
       
   588 val bij_def = thm "bij_def";
       
   589 
       
   590 val surj_is_fun = thm "surj_is_fun";
       
   591 val fun_is_surj = thm "fun_is_surj";
       
   592 val surj_range = thm "surj_range";
       
   593 val f_imp_surjective = thm "f_imp_surjective";
       
   594 val lam_surjective = thm "lam_surjective";
       
   595 val cantor_surj = thm "cantor_surj";
       
   596 val inj_is_fun = thm "inj_is_fun";
       
   597 val inj_equality = thm "inj_equality";
       
   598 val inj_apply_equality = thm "inj_apply_equality";
       
   599 val f_imp_injective = thm "f_imp_injective";
       
   600 val lam_injective = thm "lam_injective";
       
   601 val bij_is_inj = thm "bij_is_inj";
       
   602 val bij_is_surj = thm "bij_is_surj";
       
   603 val bij_is_fun = thm "bij_is_fun";
       
   604 val lam_bijective = thm "lam_bijective";
       
   605 val RepFun_bijective = thm "RepFun_bijective";
       
   606 val idI = thm "idI";
       
   607 val idE = thm "idE";
       
   608 val id_type = thm "id_type";
       
   609 val id_conv = thm "id_conv";
       
   610 val id_mono = thm "id_mono";
       
   611 val id_subset_inj = thm "id_subset_inj";
       
   612 val id_inj = thm "id_inj";
       
   613 val id_surj = thm "id_surj";
       
   614 val id_bij = thm "id_bij";
       
   615 val subset_iff_id = thm "subset_iff_id";
       
   616 val inj_converse_fun = thm "inj_converse_fun";
       
   617 val left_inverse_lemma = thm "left_inverse_lemma";
       
   618 val left_inverse = thm "left_inverse";
       
   619 val left_inverse_bij = thm "left_inverse_bij";
       
   620 val right_inverse_lemma = thm "right_inverse_lemma";
       
   621 val right_inverse = thm "right_inverse";
       
   622 val right_inverse_bij = thm "right_inverse_bij";
       
   623 val inj_converse_inj = thm "inj_converse_inj";
       
   624 val inj_converse_surj = thm "inj_converse_surj";
       
   625 val bij_converse_bij = thm "bij_converse_bij";
       
   626 val compI = thm "compI";
       
   627 val compE = thm "compE";
       
   628 val compEpair = thm "compEpair";
       
   629 val converse_comp = thm "converse_comp";
       
   630 val range_comp = thm "range_comp";
       
   631 val range_comp_eq = thm "range_comp_eq";
       
   632 val domain_comp = thm "domain_comp";
       
   633 val domain_comp_eq = thm "domain_comp_eq";
       
   634 val image_comp = thm "image_comp";
       
   635 val comp_mono = thm "comp_mono";
       
   636 val comp_rel = thm "comp_rel";
       
   637 val comp_assoc = thm "comp_assoc";
       
   638 val left_comp_id = thm "left_comp_id";
       
   639 val right_comp_id = thm "right_comp_id";
       
   640 val comp_function = thm "comp_function";
       
   641 val comp_fun = thm "comp_fun";
       
   642 val comp_fun_apply = thm "comp_fun_apply";
       
   643 val comp_lam = thm "comp_lam";
       
   644 val comp_inj = thm "comp_inj";
       
   645 val comp_surj = thm "comp_surj";
       
   646 val comp_bij = thm "comp_bij";
       
   647 val comp_mem_injD1 = thm "comp_mem_injD1";
       
   648 val comp_mem_injD2 = thm "comp_mem_injD2";
       
   649 val comp_mem_surjD1 = thm "comp_mem_surjD1";
       
   650 val comp_mem_surjD2 = thm "comp_mem_surjD2";
       
   651 val left_comp_inverse = thm "left_comp_inverse";
       
   652 val right_comp_inverse = thm "right_comp_inverse";
       
   653 val comp_eq_id_iff = thm "comp_eq_id_iff";
       
   654 val fg_imp_bijective = thm "fg_imp_bijective";
       
   655 val nilpotent_imp_bijective = thm "nilpotent_imp_bijective";
       
   656 val invertible_imp_bijective = thm "invertible_imp_bijective";
       
   657 val inj_disjoint_Un = thm "inj_disjoint_Un";
       
   658 val surj_disjoint_Un = thm "surj_disjoint_Un";
       
   659 val bij_disjoint_Un = thm "bij_disjoint_Un";
       
   660 val surj_image = thm "surj_image";
       
   661 val restrict_image = thm "restrict_image";
       
   662 val restrict_inj = thm "restrict_inj";
       
   663 val restrict_surj = thm "restrict_surj";
       
   664 val restrict_bij = thm "restrict_bij";
       
   665 val inj_weaken_type = thm "inj_weaken_type";
       
   666 val inj_succ_restrict = thm "inj_succ_restrict";
       
   667 val inj_extend = thm "inj_extend";
       
   668 *}
    37 
   669 
    38 end
   670 end